Contents

1 Overview of Python .. 8
 1.1 Python is interpreted ... 8
 1.2 Assignments versus equations 8
 1.3 Calling Functions .. 8
 1.4 Types ... 9
 1.5 The type function .. 9
 1.6 Null values .. 9
 1.7 Testing for Null values ... 10
 1.8 Converting values between types 10
 1.8.1 Converting to floating-point 10
 1.8.2 Converting to integers 10
 1.9 Variables are not typed .. 11
 1.10 Polymorphism ... 11
 1.11 Conditional Statements and Indentation 11
 1.11.1 if statements .. 11
 1.11.2 Changing indentation 12
 1.11.3 if and else .. 12
 1.11.4 elif .. 12
 1.12 Lists .. 13
 1.13 Mutable Datastructures ... 13
 1.14 References .. 13
 1.14.1 Side effects ... 13
 1.15 State and identity .. 14
 1.15.1 Example .. 14
 1.15.2 Comparing state .. 14
 1.15.3 Comparing identity .. 14
 1.15.4 Copying data prevents side effects 15
 1.16 Iteration .. 15
 1.16.1 Including more than one statement inside the loop 15
 1.16.2 Looping a specified number of times 16
 1.16.3 The range function .. 16
 1.16.4 for loops with the range function 16
 1.17 List Indexing .. 16
 1.18 List Slicing .. 17
 1.18.1 Indexing from the start or end 17
 1.19 Negative Indexing ... 18
 1.20 Collections .. 18
 1.20.1 Tuples .. 18
 1.20.2 Sets .. 19
 1.20.3 Dictionaries ... 20
 1.20.4 The size of a collection 22
 1.20.5 Arrays .. 23
 1.21 The numpy module .. 23
 1.21.1 Creating an array .. 23
 1.21.2 Functions over arrays 24
 1.21.3 Populating Arrays .. 24
 1.21.4 Basic Plotting .. 24
 1.21.5 Plotting a sine curve 25
 1.21.6 Plotting a histogram .. 26
 1.21.7 Computing histograms as matrices 26
 1.22 Defining new functions ... 26
 1.23 Local Variables .. 27
 1.24 Functional Programming .. 27
 1.25 Mapping the elements of a collection 28
1.26 List Comprehensions 28
1.27 Cartesian product using list comprehensions 28
 1.27.1 example .. 28
1.28 Cartesian products with other collections 29
1.29 Joining collections using a zip 29
1.30 Anonymous Function Literals 29
1.31 Filtering data 30
1.32 Filtering using a list comprehension 30
1.33 The reduce function 30
1.34 Big Data ... 30

2 Numerical Computing in Python 31
 2.1 Overview ... 31
 2.2 Representing continuous values 31
 2.3 Fixed-point verses floating-point 31
 2.4 Scientific Notation 32
 2.5 Scientific Notation in Python 32
 2.6 Floating-point representation 32
 2.7 Bias .. 32
 2.8 Double and single precision formats 33
 2.9 Loss of precision 34
 2.10 Loss of precision 34
 2.11 Ranges of floating-point values 34
 2.12 Effective floating-point range 34
 2.13 Range versus precision 35
 2.14 Floating-point density 35
 2.15 Representing Zero 36
 2.16 Zero in Python 36
 2.17 Infinity .. 37
 2.18 Infinity in Python 37
 2.19 Negative infinity in Python 37
 2.20 Not A Number (NaN) 37
 2.21 NaN in Python 37
 2.22 Comparing NaN values in Python 38
 2.23 NaN is not the same as None 38
 2.24 Beware finite precision 39
 2.25 Relative and absolute error 39
 2.26 Numerical Methods 39
 2.27 Numerical stability 39
 2.28 Catastrophic Cancellation 40
 2.29 Catastrophic Cancellation and Relative Error 40
 2.30 Catastrophic Cancellation in Python 40
 2.30.1 Cancellation versus addition 41
 2.30.2 Floating-point arithmetic is nearly always inaccurate. 41
 2.31 Use a well-tested library for numerical algorithms. 41
 2.32 Importing numpy 41
 2.33 Arrays ... 42
 2.34 Arrays in numpy 42
 2.35 Array indexing 42
 2.36 Arrays are not lists 42
 2.37 Populating Arrays 43
 2.38 Functions over arrays 43
 2.39 Vectorized functions 44
 2.40 vectorize example 44
 2.41 Testing for equality 44
4 Statistics and optimization with SciPy

4.1 The SciPy library
4.2 Overview
4.3 Loading data into a pandas dataframe
4.4 Downloading price data using as CSV
4.5 Plotting the price of the stock
4.6 Converting to monthly data
4.7 Calculating log returns
4.8 Converting the returns to a data frame
4.9 Return histogram
4.10 Descriptive statistics of the return distribution
4.11 Summarising the distribution using a boxplot
4.12 Q-Q plots
4.13 The Jarque-Bera Test
4.14 The Jarque-Bera test using a bootstrap
 4.14.1 Bootstrap code
4.15 The distribution of the test-statistic under the null hypothesis
4.16 The critical value
4.17 Rejecting the null hypothesis
 4.17.1 Test data from a normal distribution
 4.17.2 Test data from a log-normal distribution
4.18 Critical-values from a Chi-Squared table
4.19 Producing a table of table critical values from a bootstrap
4.20 Using the jarque_bera function in scipy
4.21 Testing the empirical data
4.22 The single-index model
4.23 Estimating the single-index model
4.24 Converting to monthly data
4.25 Plotting monthly returns
4.26 Converting to simple returns
4.27 Concatenating data into a single data frame
4.28 Scatter plots
4.29 Scatter plots using the plot() method of a data frame
4.30 Computing the correlation matrix
4.31 Covariance and correlation of a data frame
4.32 Comparing multiple attributes in a data frame
5 Monte-Carlo Methods .. 103
 5.1 Quantitative Models ... 103
 5.2 Monte-Carlo Methods ... 103
 5.3 The Monte-Carlo Casino 103
 5.4 Pseudo-code ... 103
 5.5 A simple Monte-Carlo method 104
 5.6 In Pseudo-code .. 104
 5.7 A Monte-Carlo algorithm for computing π 104
 5.8 Monte-Carlo Integration 105
 5.9 Estimating π using Monte-Carlo integration 105
 5.10 Estimation error ... 105
 5.11 Computing the error numerically 106
 5.12 The error for a small random sample 106
 5.13 Monte-Carlo estimation of the sampling error 106
 5.14 Monte-Carlo estimation of the standard error 107
 5.15 The sampling distribution of the mean 108
 5.16 The sampling distribution of the mean 108
 5.17 The sampling distribution of the mean 108
 5.18 Increasing the sample size 109
 5.18.1 Increasing the sample size further 110
 5.19 The sampling distribution of the mean 111
 5.20 Summary ... 111

6 Random walks in Python ... 112
 6.1 A Simple Random Walk ... 112
 6.2 Movements as Bernoulli trials 112
 6.2.1 Simulating a Bernoulli process in Python 112
 6.3 An integer random-walk in Python 112
 6.3.1 an integer random-walk using a loop 112
 6.4 A random-walk as a cumulative sum 113
 6.4.1 an integer random-walk using an accumulator 114
 6.5 A random-walk using arrays 114
 6.5.1 an integer random-walk using vectorization 114
6.5.2 Using concatenate to prepend the initial value .. 115
6.6 Multiple realisations of a stochastic process ... 116
6.7 Using cumsum() ... 116
6.8 Multiplicative Random Walks ... 117
6.9 Using cumprod() ... 117
6.10 Random walk variates as a time-series .. 118
6.11 Gross returns .. 119
6.12 Continuously compounded, or log returns .. 119
6.13 Aggregating returns ... 120
6.14 Converting between simple and log returns .. 120
6.15 Comparing simple and log returns .. 120
6.16 A discrete multiplicative random walk with log returns 121
 6.16.1 Plotting a single realization .. 121
6.17 Multiple realisations of a multiplicative random-walk 122
6.18 Geometric Brownian Motion .. 123
 6.18.1 GBM with multiple paths in Python .. 123

7 Monte-Carlo simulation for option pricing ... 125
 7.1 Options .. 125
 7.2 Payoff to an option holder .. 125
 7.3 Outcomes .. 125
 7.3.1 Plotting the payoff function ... 126
 7.4 Parameters which affect the inner-value .. 126
 7.5 Risk-neutral assumptions .. 126
 7.6 Risk-neutral parameters .. 127
 7.7 Monte-Carlo option valuation .. 127
 7.8 Non-path dependent algorithm to estimate the inner-value: 127
 7.9 Monte-Carlo valuation of European call option in Python 127
 7.10 Asian (average-value) option .. 128
 7.11 Path-dependent Monte-Carlo option pricing ... 128
 7.12 Algorithm for path-dependent option pricing ... 128
 7.12.1 Monte-Carlo valuation of Asian fixed-strike call option in Python 129

8 Estimating Value-At-Risk (VaR) in Python .. 130
 8.1 Value-at-Risk (VaR) .. 130
 8.2 Value-at-Risk (VaR) .. 130
 8.3 Mathematical definition ... 131
 8.4 Quantiles, Quartiles and Percentiles .. 131
 8.5 Computing quantiles in Python .. 132
 8.6 Computing quantiles in Python .. 132
 8.7 Computing several percentiles .. 132
 8.8 Estimating VaR .. 133
 8.9 Estimating VaR .. 133
 8.10 Historical simulation .. 133
 8.11 Random choices in Python .. 133
 8.12 Generating a sequence of choices .. 134
 8.13 Bootstrapping from empirical data ... 134
 8.14 Obtaining returns for the Nikkei 225 index ... 134
 8.15 Simulating returns ... 135
 8.16 Simulating prices ... 135
 8.17 The distribution of the final price ... 138
 8.18 The distribution of the profit and loss .. 138
 8.19 The quantiles of the profit and loss ... 139
1 Overview of Python

(c) 2019 Steve Phelps

1.1 Python is interpreted

• Python is an interpreted language, in contrast to Java and C which are compiled languages.
• This means we can type statements into the interpreter and they are executed immediately.

```
1 5 + 5
10
```

• Groups of statements are all executed one after the other:

```
x = 5
y = 'Hello There'
z = 10.5
```

• We can visualize the above code using PythonTutor.

```
x + 5
```

10

1.2 Assignments versus equations

• In Python when we write `x = 5` this means something different from an equation `x = 5`.
• Unlike variables in mathematical models, variables in Python can refer to different things as more statements are interpreted.

```
x = 1
print('The value of x is', x)
x = 2.5
print('Now the value of x is', x)
x = 'hello there'
print('Now it is ', x)
```

```
The value of x is 1
Now the value of x is 2.5
Now it is hello there
```

1.3 Calling Functions

We can call functions in a conventional way using round brackets
1.4 Types

- Values in Python have an associated type.
- If we combine types incorrectly we get an error.

```python
print(y)
```

Hello There

```python
y + 5
```

```
TypeError

Traceback (most recent call last)

<ipython-input-8-b85a2dbb3f6a> in <module>
----> 1 y + 5

TypeError: can only concatenate str (not "int") to str
```

1.5 The type function

- We can query the type of a value using the `type` function.

```python
type(1)
```

```
int
```

```python
type('hello')
```

```
str
```

```python
type(2.5)
```

```
float
```

```python
type(True)
```

```
bool
```

1.6 Null values

- Sometimes we represent “no data” or “not applicable”.
- In Python we use the special value `None`.
- This corresponds to `null` in Java or SQL.
When we fetch the value `None` in the interactive interpreter, no result is printed out.

```python
result = None

result
```

1.7 Testing for Null values

- We can check whether there is a result or not using the `is` operator:

```python
result is None
```

```
True
```

```python
x = 5
x is None
```

```
False
```

1.8 Converting values between types

- We can convert values between different types.

1.8.1 Converting to floating-point

- To convert an integer to a floating-point number use the `float()` function.

```python
x = 1
x
```

```
1
```

```python
type(x)
```

```
int
```

```python
y = float(x)
y
```

```
1.0
```

1.8.2 Converting to integers

- To convert a floating-point to an integer use the `int()` function.
1.9 Variables are not typed

- Variables themselves, on the other hand, do not have a fixed type.
- It is only the values that they refer to that have a type.
- This means that the type referred to by a variable can change as more statements are interpreted.

```python
y = 'hello'
print('The type of the value referred to by y is ', type(y))
y = 5.0
print('And now the type of the value is ', type(y))
```

The type of the value referred to by y is `<class 'str'>`
And now the type of the value is `<class 'float'>`

1.10 Polymorphism

- The meaning of an operator depends on the types we are applying it to.

```python
1 + 1
```

2

```python
'a' + 'b'
```

'ab'

```python
'i' + 'i'
```

'ii'

1.11 Conditional Statements and Indentation

- The syntax for control structures in Python uses `colons` and `indentation`.
- Beware that white-space affects the semantics of Python code.
- Statements that are indented using the Tab key are grouped together.

1.11.1 if statements
```python
x = 5
if x > 0:
    print('x is strictly positive. ')
    print(x)
print('finished. ')
```

x is strictly positive.
5
finished.

- Visualize the above on PythonTutor.

1.11.2 Changing indentation

```python
x = 0
if x > 0:
    print('x is strictly positive. ')
print(x)
print('finished. ')
```

0
finished.

- Visualize the above on PythonTutor.

1.11.3 if and else

```python
x = 0
print('Starting. ')
if x > 0:
    print('x is strictly positive. ')
else:
    if x < 0:
        print('x is strictly negative. ')
    else:
        print('x is zero. ')
print('finished. ')
```

Starting.
x is zero.
finished.

- Visualize the above on PythonTutor.

1.11.4 elif

```python
print('Starting. ')
if x > 0:
    print('x is strictly positive')
elif x < 0:
    print('x is strictly negative')
else:
```

1 Overview of Python
print('x is zero')
print('finished."

Starting.
x is zero
finished.

1.12 Lists

We can use lists to hold an ordered sequence of values.

```python
l = ['first', 'second', 'third']
l
['first', 'second', 'third']
```

Lists can contain different types of variable, even in the same list.

```python
another_list = ['first', 'second', 'third', 1, 2, 3]
another_list

['first', 'second', 'third', 1, 2, 3]
```

1.13 Mutable Datastructures

Lists are mutable; their contents can change as more statements are interpreted.

```python
l.append('fourth')
l
['first', 'second', 'third', 'fourth']
```

1.14 References

- Whenever we bind a variable to a value in Python we create a reference.
- A reference is distinct from the value that it refers to.
- Variables are names for references.

```python
X = [1, 2, 3]
Y = X
```

1.14.1 Side effects

- The above code creates two different references (named X and Y) to the same value [1, 2, 3]
- Because lists are mutable, changing them can have side-effects on other variables.
- If we append something to X what will happen to Y?
1.15 State and identity

- The state referred to by a variable is different from its identity.
- To compare state use the == operator.
- To compare identity use the is operator.
- When we compare identity we check equality of references.
- When we compare state we check equality of values.

1.15.1 Example

- We will create two different lists, with two associated variables.

```python
X = [1, 2]
Y = [1]
Y.append(2)
```

- Visualize the above code on PythonTutor.

1.15.2 Comparing state

```python
X
```

[1, 2]

```python
Y
```

[1, 2]

```python
X == Y
```

True

1.15.3 Comparing identity
1.15.4 Copying data prevents side effects

- In this example, because we have two different lists we avoid side effects

```python
Y.append(3)
X
[1, 2]
X == Y
False
X is Y
False
```

1.16 Iteration

- We can iterate over each element of a list in turn using a for loop:

```python
my_list = ['first', 'second', 'third', 'fourth']
for i in my_list:
    print(i)
```

```
first
second
third
fourth
```

- Visualize the above on PythonTutor.

1.16.1 Including more than one statement inside the loop

```python
my_list = ['first', 'second', 'third', 'fourth']
for i in my_list:
    print("The next item is:")
    print(i)
    print()
```

```
The next item is:
first

The next item is:
second

The next item is:
third
```
1.16.2 Looping a specified number of times

- To perform a statement a certain number of times, we can iterate over a list of the required size.

```python
for i in [0, 1, 2, 3]:
    print("Hello!"
```

Hello!
Hello!
Hello!
Hello!

1.16.3 The `range` function

- To save from having to manually write the numbers out, we can use the function `range()` to count for us.
- We count starting at 0 (as in Java and C++).

```python
list(range(4))
```

[0, 1, 2, 3]

1.16.4 for loops with the `range` function

```python
for i in range(4):
    print("Hello!"
```

Hello!
Hello!
Hello!
Hello!

1.17 List Indexing

- Lists can be indexed using square brackets to retrieve the element stored in a particular position.

```python
my_list
```

['first', 'second', 'third', 'fourth']

```python
my_list[0]
```
1.18 List Slicing

- We can also specify a range of positions.
- This is called slicing.
- The example below indexes from position 0 (inclusive) to 2 (exclusive).

```python
my_list[0:2]
```

```
['first', 'second']
```

1.18.1 Indexing from the start or end

- If we leave out the starting index it implies the beginning of the list:

```python
my_list[:2]
```

```
['first', 'second']
```

- If we leave out the final index it implies the end of the list:

```python
my_list[2:]
```

```
['third', 'fourth']
```

1.18.1.1 Copying a List

- We can conveniently copy a list by indexing from start to end:

```python
new_list = my_list[:]
```

```python
new_list
```

```
['first', 'second', 'third', 'fourth']
```

```python
new_list is my_list
```

```
False
```
1.19 Negative Indexing

- Negative indices count from the end of the list:

```python
my_list[-1]
```

'fourth'

```python
my_list[:-1]
```

['first', 'second', 'third']

1.20 Collections

- Lists are an example of a collection.
- A collection is a type of value that can contain other values.
- There are other collection types in Python:
 - tuple
 - set
 - dict

1.20.1 Tuples

- Tuples are another way to combine different values.
- The combined values can be of different types.
- Like lists, they have a well-defined ordering and can be indexed.
- To create a tuple in Python, use round brackets instead of square brackets

```python
tuple1 = (50, 'hello')
tuple1
```

(50, 'hello')

```python
tuple1[0]
```

50

```python
type(tuple1)
```

(type)
1.20.1 Tuples are immutable

- Unlike lists, tuples are **immutable**. Once we have created a tuple we cannot add values to it.

```python
tuple1.append(2)
```

```text
AttributeError Traceback (most recent call last)
<ipython-input-64-46e3866e32ee> in <module>
----> 1 tuple1.append(2)

AttributeError: 'tuple' object has no attribute 'append'
```

1.20.2 Sets

- Lists can contain duplicate values.
- A set, in contrast, contains no duplicates.
- Sets can be created from lists using the `set()` function.

```python
X = set([1, 2, 3, 3, 4])
X
```

```python
{1, 2, 3, 4}
```

```python
type(X)
```

```text
set
```

- Alternatively we can write a set literal using the `{ and }` brackets.

```python
X = {1, 2, 3, 4}
type(X)
```

```python
set
```

1.20.2.1 Sets are mutable

- Sets are mutable like lists:

```python
X.add(5)
X
```

```python
{1, 2, 3, 4, 5}
```

- Duplicates are automatically removed
1.20.2.2 Sets are unordered

- Sets do not have an ordering.
- Therefore we cannot index or slice them:

```python
X[0]
```

```
TypeError                             Traceback (most recent
call last)
<ipython-input-70-19c40ecbd036> in <module>
----> 1 X[0]

TypeError: 'set' object is not subscriptable
```

1.20.2.3 Operations on sets

- Union: \(X \cup Y \)

```python
X = {1, 2, 3}
Y = {4, 5, 6}
X | Y
```

\(\{1, 2, 3, 4, 5, 6\} \)

- Intersection: \(X \cap Y \):

```python
X = {1, 2, 3, 4}
Y = {3, 4, 5}
X & Y
```

\(\{3, 4\} \)

- Difference \(X - Y \):

```python
X - Y
```

\(\{1, 2\} \)

1.20.3 Dictionaries

- A dictionary contains a mapping between keys, and corresponding values.
 - Mathematically it is a one-to-one function with a finite domain and range.
- Given a key, we can very quickly look up the corresponding value.
- The values can be any type (and need not all be of the same type).
- Keys can be any immutable (hashable) type.
- They are abbreviated by the keyword `dict`.
- In other programming languages they are sometimes called associative arrays.
1.20.3.1 Creating a dictionary

- A dictionary contains a set of key-value pairs.
- To create a dictionary:

```python
students = { 107564: 'Xu', 108745: 'Ian', 102567: 'Steve' }
```

- The above initialises the dictionary students so that it contains three key-value pairs.
- The keys are the student id numbers (integers).
- The values are the names of the students (strings).
- Although we use the same brackets as for sets, this is a different type of collection:

```python
type(students)
```

```
dict
```

1.20.3.2 Accessing the values in a dictionary

- We can access the value corresponding to a given key using the same syntax to access particular elements of a list:

```python
students[108745]
```

'Ian'

- Accessing a non-existent key will generate a `KeyError`:

```python
students[123]
```

```
---           Traceback (most recent call last)

<ipython-input-77-26e887eb0296> in <module>
----> 1 students[123]

KeyError: 123
```

1.20.3.3 Updating dictionary entries

- Dictionaries are mutable, so we can update the mapping:

```python
students[108745] = 'Fred'
print(students[108745])
```

Fred

- We can also grow the dictionary by adding new keys:
1.20.3.4 Dictionary keys can be any immutable type
 • We can use any immutable type for the keys of a dictionary
 • For example, we can map names onto integers:

```python
age = { 'John':21, 'Steve':47, 'Xu': 22 }
```

```python
age['Steve']
```
47

1.20.3.5 Creating an empty dictionary
 • We often want to initialise a dictionary with no keys or values.
 • To do this call the function `dict()`:

```python
result = dict()
```
 • We can then progressively add entries to the dictionary, e.g. using iteration:

```python
for i in range(5):
    result[i] = i**2
print(result)
```

```
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
```

1.20.3.6 Iterating over a dictionary
 • We can use a for loop with dictionaries, just as we can with other collections such as sets.
 • When we iterate over a dictionary, we iterate over the keys.
 • We can then perform some computation on each key inside the loop.
 • Typically we will also access the corresponding value.

```python
for id in students:
    print(students[id])
```

```
Xu
Fred
Steve
John
```

1.20.4 The size of a collection
 • We can count the number of values in a collection using the `len` (length) function.
 • This can be used with any type of collection (list, set, tuple etc.).
1.20.4.1 Empty collections

- Empty collections have a size of zero:
  ```python
  empty_list = []
  len(empty_list) == 0
  True
  ```

1.20.5 Arrays

- Python also has arrays which contain a single type of value.
- i.e. we cannot have different types of value within the same array.
- Arrays are mutable like lists; we can modify the existing elements of an array.
- However, we typically do not change the size of the array; i.e. it has a fixed length.

1.21 The numpy module

- Arrays are provided by a separate module called numpy. Modules correspond to packages in e.g. Java.
- We can import the module and then give it a shorter alias.
  ```python
  import numpy as np
  ```
- We can now use the functions defined in this package by prefixing them with np.
- The function array() creates an array given a list.

1.21.1 Creating an array

- We can create an array from a list by using the array() function defined in the numpy module:
  ```python
  x = np.array([0, 1, 2, 3, 4])
  x
  ```
When we use arithmetic operators on arrays, we create a new array with the result of applying the operator to each element.

```python
y = x * 2
```

```plaintext
array([0, 2, 4, 6, 8])
```

The same goes for functions:

```python
x = np.array([-1, 2, 3, -4])
y = abs(x)
```

```plaintext
array([1, 2, 3, 4])
```

1.2.1.3 Populating Arrays

To populate an array with a range of values we use the `np.arange()` function:

```python
x = np.arange(0, 10)
```

```plaintext
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

We can also use floating point increments.

```python
x = np.arange(0, 1, 0.1)
```

```plaintext
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
```

1.2.1.4 Basic Plotting

- We will use a module called `matplotlib` to plot some simple graphs.
- This module provides functions which are very similar to MATLAB plotting commands.

```python
import matplotlib.pyplot as plt
y = x*2 + 5
plt.plot(x, y)
plt.show()
```
1.21.5 Plotting a sine curve

```python
from numpy import pi, sin

x = np.arange(0, 2*pi, 0.01)
y = sin(x)
plt.plot(x, y)
plt.show()
```
1.21.6 Plotting a histogram

- We can use the `hist()` function in `matplotlib` to plot a histogram.

```python
# Generate some random data
data = np.random.randn(1000)

ax = plt.hist(data)
plt.show()
```

1.21.7 Computing histograms as matrices

- The function `histogram()` in the `numpy` module will count frequencies into bins and return the result as a 2-dimensional array.

```python
np.histogram(data)
```

(array([[14, 41, 128, 178, 243, 203, 109, 66, 14, 4]],
 array([-2.81515826, -2.19564948, -1.57614071, -0.95663193, -0.33712315,
 0.28238562, 0.9018944 , 1.52140318, 2.14091195,
 2.76042073, 3.3799295]))

1.22 Defining new functions

```python
def squared(x):
    return x ** 2
```
1.23 Local Variables

- Variables created inside functions are local to that function.
- They are not accessible to code outside of that function.

```python
def squared(x):
    temp = x ** 2
    return temp
```

```python
squared(5)
```

```
NameError: name 'temp' is not defined
```

1.24 Functional Programming

- Functions are first-class citizens in Python.
- They can be passed around just like any other value.

```python
squared
```

```python
<function __main__.squared(x)>
```

```python
y = squared
```

```python
<function __main__.squared(x)>
```

```python
y(5)
```
1.25 Mapping the elements of a collection

- We can apply a function to each element of a collection using the built-in function `map()`.
- This will work with any collection: list, set, tuple or string.
- This will take as an argument another function, and the list we want to apply it to.
- It will return the results of applying the function, as a list.

```python
list(map(squared, [1, 2, 3, 4]))
```

[1, 4, 9, 16]

1.26 List Comprehensions

- Because this is such a common operation, Python has a special syntax to do the same thing, called a list comprehension.

```python
[squared(i) for i in [1, 2, 3, 4]]
```

[1, 4, 9, 16]

- If we want a set instead of a list we can use a set comprehension

```python
{sqrt(i) for i in [1, 2, 3, 4]}
```

{1, 4, 9, 16}

1.27 Cartesian product using list comprehensions

image courtesy of Quartl

The Cartesian product of two collections $X = A \times B$ can be expressed by using multiple `for` statements in a comprehension.

1.27.1 example

```python
A = {'x', 'y', 'z'}
B = {1, 2, 3}
{(a,b) for a in A for b in B}
```

{('x', 1),
 ('x', 2),
 ('x', 3),
 ('y', 1),
 ('y', 2),
 ('y', 3),
 ('z', 1),}
1.28 Cartesian products with other collections

- The syntax for Cartesian products can be used with any collection type.

```python
first_names = ('Steve', 'John', 'Peter')
surnames = ('Smith', 'Doe', 'Rabbit')
[(first_name, surname) for first_name in first_names for surname in surnames]
```

1.29 Joining collections using a zip

- The Cartesian product pairs every combination of elements.
- If we want a 1-1 pairing we use an operation called a zip.
- A zip pairs values at the same position in each sequence.
- Therefore:
 - it can only be used with sequences (not sets); and
 - both collections must be of the same length.

```python
list(zip(first_names, surnames))
```

1.30 Anonymous Function Literals

- We can also write anonymous functions.
- These are function literals, and do not necessarily have a name.
- They are called lambda expressions (after the \(\lambda \)-calculus).

```python
list(map(lambda x: x ** 2, [1, 2, 3, 4]))
```

[1, 4, 9, 16]
1.31 Filtering data

- We can filter a list by applying a predicate to each element of the list.
- A predicate is a function which takes a single argument, and returns a boolean value.
- \(\text{filter}(p, X) \) is equivalent to \(\{ x : p(x) \ \forall x \in X \} \) in set-builder notation.

```python
list(filter(lambda x: x > 0, [-5, 2, 3, -10, 0, 1]))
```

\[[2, 3, 1] \]

We can use both \(\text{filter()} \) and \(\text{map()} \) on other collections such as strings or sets.

```python
list(filter(lambda x: x > 0, [-5, 2, 3, -10, 0, 1]))
```

\[[1, 2, 3] \]

1.32 Filtering using a list comprehension

- Again, because this is such a common operation, we can use simpler syntax to say the same thing.
- We can express a filter using a list-comprehension by using the keyword **if**:

```python
data = [-5, 2, 3, -10, 0, 1]
[x for x in data if x > 0]
```

\[[2, 3, 1] \]

- We can also filter and then map in the same expression:

```python
from numpy import sqrt
[sqrt(x) for x in data if x > 0]
```

\[[1.4142135623730951, 1.7320508075688772, 1.0] \]

1.33 The reduce function

- The \(\text{reduce()} \) function recursively applies another function to pairs of values over the entire list, resulting in a single return value.

```python
from functools import reduce
reduce(lambda x, y: x + y, [0, 1, 2, 3, 4, 5])
```

\[15 \]

1.34 Big Data

- The \(\text{map()} \) and \(\text{reduce()} \) functions form the basis of the map-reduce programming model.
- Map-reduce is the basis of modern highly-distributed large-scale computing frameworks.
- It is used in BigTable, Hadoop and Apache Spark.
- See these examples in Python for Apache Spark.
2 Numerical Computing in Python

(c) 2019 Steve Phelps

2.1 Overview

- Floating-point representation
- Arrays and Matrices with numpy
- Basic plotting with matplotlib
- Pseudo-random variates with numpy.random

2.2 Representing continuous values

- Digital computers are inherently discrete.
- Real numbers \(x \in \mathbb{R} \) cannot always be represented exactly in a digital computer.
- They are stored in a format called floating-point.
- IEEE Standard 754 specifies a universal format across different implementations.
 - As always there are deviations from the standard.
- There are two standard sizes of floating-point numbers: 32-bit and 64-bit.
- 64-bit numbers are called double precision, are sometimes called double values.
- IEEE floating-point calculations are performed in hardware on modern computers.
- How can we represent arbitrary real values using only 32 bits?

2.3 Fixed-point versus floating-point

- One way we could discretise continuous values is to represent them as two integers \(x \) and \(y \).
- The final value is obtained by e.g. \(r = x + y \times 10^{-5} \).
- So the number 500.4421 would be represented as the tuple \(x = 500, y = 44210 \).
- The exponent 5 is fixed for all computations.
- This number represents the precision with which we can represent real values.
- It corresponds to the where we place we place the decimal point.
- This scheme is called fixed precision.
- It is useful in certain circumstances, but suffers from many problems, in particular it can only represent a very limited range of values.
- In practice, we use variable precision, also known as floating point.
2.4 Scientific Notation

- Humans also use a form of floating-point representation.
- In Scientific notation, all numbers are written in the form $m \times 10^n$.
- When represented in ASCII, we abbreviate this as $\times 10^n$, for example 6.72×10^{11}.
- The integer m is called the significand or mantissa.
- The integer n is called the exponent.
- The integer 10 is the base.

2.5 Scientific Notation in Python

- Python uses Scientific notation when it displays floating-point numbers:

```python
>>> print (6720000000000000.0)
6.72e+11
```

- Note that internally, the value is not represented exactly like this.
- Scientific notation is a convention for writing or rendering numbers, not representing them digitally.

2.6 Floating-point representation

- Floating point numbers use a base of 2 instead of 10.
- Additionally, the mantissa and exponent are stored in binary.
- Therefore we represent floating-point numbers as $m \times 2^e$.
- The integer m (mantissa) and e (exponent) are stored in binary.
- The mantissa uses two’s complement to represent positive and negative numbers.
 - One bit is reserved as the sign-bit: 1 for negative, 0 for positive values.
- The mantissa is normalised, so we assume that it starts with the digit 1 (which is not stored).

2.7 Bias

- We also need to represent signed exponents.
- The exponent does not use two’s complement.
- Instead a bias value is subtracted from the stored exponent (s) to obtain the final value (e).
- Double-precision values use a bias of $b = 1023$, and single-precision uses a bias value of $b = 127$.
- The actual exponent is given by $e = s - b$ where s is the stored exponent.
- The stored exponent values $s = 0$ and $s = 1024$ are reserved for special values—discussed later.
- The stored exponent s is represented in binary without using a sign bit.
2.8 Double and single precision formats

The number of bits allocated to represent each integer component of a float is given below:
<table>
<thead>
<tr>
<th>Format</th>
<th>Sign</th>
<th>Exponent</th>
<th>Mantissa</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>double</td>
<td>1</td>
<td>11</td>
<td>52</td>
<td>64</td>
</tr>
</tbody>
</table>

- By default, Python uses 64-bit precision.
- We can specify alternative precision by using the numpy numeric data types.

2.9 Loss of precision

- We cannot represent every value in floating-point.
- Consider single-precision (32-bit).
- Let’s try to represent 4,039,944,879.

2.10 Loss of precision

- As a binary integer we write 4,039,944,879 as:

\[
11110000 \ 11001100 \ 10101010 \ 10101111
\]
- This already takes up 32-bits.
- The mantissa only allows us to store 24-bit integers.
- So we have to round. We store it as:

\[
+1.1110000 \ 11001100 \ 10101110 \times 2^{31}
\]
- Which gives us

\[
+11110000 \ 11001100 \ 10101011 \ 0000000 = 4,039,944,960
\]

2.11 Ranges of floating-point values

In single precision arithmetic, we cannot represent the following values:

- Negative numbers less than \(- (2 - 2^{-23}) \times 2^{127}\)
- Negative numbers greater than \(-2^{-149}\)
- Positive numbers less than \(2^{-149}\)
- Positive numbers greater than \((2 - 2^{-23}) \times 2^{127}\)

Attempting to represent these numbers results in overflow or underflow.

2.12 Effective floating-point range

<table>
<thead>
<tr>
<th>Format</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>(\pm (2 - 2^{-23}) \times 2^{127})</td>
<td>(\approx \pm 10^{38.53})</td>
</tr>
<tr>
<td>double</td>
<td>(\pm (2 - 2^{-52}) \times 2^{1023})</td>
<td>(\approx \pm 10^{308.25})</td>
</tr>
</tbody>
</table>
2.13 Range versus precision

- With a fixed number of bits, we have to choose between:
 - maximising the range of values (minimum to maximum) we can represent,
 - maximising the precision with which we can represent each individual value.
- These are conflicting objectives:
 - we can increase range, but only by losing precision,
 - we can increase precision, but only by decreasing range.
- Floating-point addresses this dilemma by allowing the precision to vary ("float") according to the magnitude of the number we are trying to represent.

2.14 Floating-point density

- Floating-point numbers are unevenly-spaced over the line of real-numbers.
- The precision decreases as we increase the magnitude.
Zero cannot be represented straightforwardly because we assume that all mantissa values start with the digit 1.

- Zero is stored as a special-case, by setting mantissa and exponent both to zero.
- The sign-bit can either be set or unset, so there are distinct positive and negative representations of zero.

2.16 Zero in Python

```python
x = +0.0
x
```

```
0.0
```

```python
y = -0.0
y
```

```
0.0
```

- However, these are considered equal:

```python
x == y
```
2.17 Infinity

- Positive overflow results in a special value of infinity (in Python `inf`).
- This is stored with an exponent consisting of all 1s, and a mantissa of all 0s.
- The sign-bit allows us to differentiate between negative and positive overflow: $-\infty$ and $+\infty$.
- This allows us to carry on calculating past an overflow event.

2.18 Infinity in Python

```python
: x = 1e300 * 1e100
: x

inf

: x = x + 1
: x

inf
```

2.19 Negative infinity in Python

```python
: x > 0

True

: y = -x
: y

-inf

: y < x

True
```

2.20 Not A Number (NaN)

- Some mathematical operations on real numbers do not map onto real numbers.
- These results are represented using the special value to NaN which represents “not a (real) number”.
- NaN is represented by an exponent of all 1s, and a non-zero mantissa.

2.21 NaN in Python
```python
from numpy import sqrt, inf, isnan, nan
x = sqrt(-1)
x
```

```
/home/awelps/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in sqrt
nan
```

```python
y = inf - inf
y
```

```
nan
```

2.22 Comparing nan values in Python

- Beware of comparing nan values

```python
x == y
```

False

- To test whether a value is nan use the isnan function:

```python
isnan(x)
```

True

2.23 NaN is not the same as None

- None represents a missing value.
- NaN represents an invalid floating-point value.
- These are fundamentally different entities:

```python
nan is None
```

False

```python
isnan(None)
```

```
TypeError
```

```
Traceback (most recent call last)
```

2 Numerical Computing in Python
Consider a floating point number \(x_{fp} \) which represents a real number \(x \in \mathbb{R} \).

In general, we cannot precisely represent the real number; that is \(x_{fp} \neq x \).

The absolute error \(r \) is \(r = x - x_{fp} \).

The relative error \(R \) is:

\[
R = \frac{x - x_{fp}}{x} \tag{2.1}
\]

2.25 Relative and absolute error

- In e.g. simulation models or quantitative analysis we typically repeatedly update numerical values inside long loops.
- Programs such as these implement numerical algorithms.
- It is very easy to introduce bugs into code like this.

2.26 Numerical Methods

- The round-off error associated with a result can be compounded in a loop.
- If the error increases as we go round the loop, we say the algorithm is numerically unstable.
- Mathematicians design numerically stable algorithms using numerical analysis.
2.28 Catastrophic Cancellation

- Suppose we have two real values x, and $y = x + \epsilon$.
- ϵ is very small and x is very large.
- x has an exact floating point representation
- However, because of lack of precision x and y have the same floating point representation.
 - i.e. they are represented as the same sequence of 64-bits
- Consider what happens when we compute $y - x$ in floating-point.

2.29 Catastrophic Cancellation and Relative Error

- Catastrophic cancellation results in very large relative error.
- If we calculate $y - x$ in floating-point we will obtain the result 0.
- The correct value is $(x + \epsilon) - x = \epsilon$.
- The relative error is

\[
\frac{\epsilon - 0}{\epsilon} = 1
\]

(2.2)

- That is, the relative error is 100%.
- This can result in catastrophe.

2.30 Catastrophic Cancellation in Python

```python
x = 3.141592653589793
x
3.141592653589793

y = 6.022e23
x = (x + y) - y
x
0.0
```
2.30.1 Cancellation versus addition

- Addition, on the other hand, is not catastrophic.

```python
z = x + y
z
```

6.022e+23

- The above result is still inaccurate with an absolute error \(r \approx \pi \).
- However, let’s examine the relative error:

\[
R = \frac{1.2044 \times 10^{24} - (1.2044 \times 10^{24} + \pi)}{1.2044 \times 10^{24} + \pi} \approx 10^{-24}
\] (2.3)

- Here we see that that the relative error from the addition is miniscule compared with the cancellation.

2.30.2 Floating-point arithmetic is nearly always inaccurate.

- You can hardly-ever eliminate absolute rounding error when using floating-point.
- The best we can do is to take steps to minimise error, and prevent it from increasing as your calculation progresses.
- Cancellation can be catastrophic, because it can greatly increase the relative error in your calculation.

2.31 Use a well-tested library for numerical algorithms.

- Avoid subtracting two nearly-equal numbers.
- Especially in a loop!
- Better-yet use a well-validated existing implementation in the form of a numerical library.

2.32 Importing numpy

- Functions for numerical computing are provided by a separate module called numpy.
- Before we use the numpy module we must import it.
- By convention, we import numpy using the alias np.
- Once we have done this we can prefix the functions in the numpy library using the prefix np.

```python
import numpy as np
```

- We can now use the functions defined in this package by prefixing them with np.
2.33 Arrays

- Arrays represent a collection of values.
- In contrast to lists:
 - arrays typically have a \textit{fixed length}
 * they can be resized, but this involves an expensive copying process.
 - and all values in the array are of the \textit{same type}.
 * typically we store floating-point values.
- Like lists:
 - arrays are \textit{mutable};
 - we can change the elements of an existing array.

2.34 Arrays in \texttt{numpy}

- Arrays are provided by the \texttt{numpy} module.
- The function \texttt{array()} creates an array given a list.

```python
import numpy as np
x = np.array([0, 1, 2, 3, 4])
x
```
array([0, 1, 2, 3, 4])

2.35 Array indexing

- We can index an array just like a list

```python
x[4]
```
4

```python
x[4] = 2
x
```
array([0, 1, 2, 3, 2])

2.36 Arrays are not lists

- Although this looks a bit like a list of numbers, it is a fundamentally different type of value:

```python
type(x)
numpy.ndarray
```

- For example, we cannot append to the array:
To populate an array with a range of values we use the `np.arange()` function:

```python
x = np.arange(0, 10)
print(x)
```

```
[0 1 2 3 4 5 6 7 8 9]
```

We can also use floating point increments.

```python
x = np.arange(0, 1, 0.1)
print(x)
```

```
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
```

2.38 Functions over arrays

- When we use arithmetic operators on arrays, we create a new array with the result of applying the operator to each element.

```python
y = x * 2
y
```

```
array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8])
```

- The same goes for numerical functions:

```python
x = np.array([-1, 2, 3, -4])
y = abs(x)
y
```

```
array([1, 2, 3, 4])
```
2.39 Vectorized functions

- Note that not every function automatically works with arrays.
- Functions that have been written to work with arrays of numbers are called *vectorized* functions.
- Most of the functions in *numpy* are already vectorized.
- You can create a vectorized version of any other function using the higher-order function `numpy.vectorize()`.

2.40 `vectorize` example

```python
def myfunc(x):
    if x >= 0.5:
        return x
    else:
        return 0.0
fv = np.vectorize(myfunc)
```

```python
x = np.arange(0, 1, 0.1)
x
```

```
array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
```

```python
fv(x)
fv(x)
```

```
array([0., 0., 0., 0., 0., 0.5, 0.6, 0.7, 0.8, 0.9])
```

2.41 Testing for equality

- Because of finite precision we need to take great care when comparing floating-point values.
- The numpy function `allclose()` can be used to test equality of floating-point numbers within a relative tolerance.
- It is a vectorized function so it will work with arrays as well as single floating-point values.

```python
x = 0.1 + 0.2
y = 0.3
x == y
```

```
False
```

```python
np.allclose(x, y)
```

```
True
```
2.42 Plotting with matplotlib

- We will use a module called matplotlib to plot some simple graphs.
- This module has a nested module called pyplot.
- By convention we import this with the alias plt.
- This module provides functions which are very similar to MATLAB plotting commands.

```python
import matplotlib.pyplot as plt
```

2.42.1 A simple linear plot

```python
x = np.arange(0, 1, 0.1)
y = x*2 + 5
plt.plot(x, y)
plt.xlabel('$x$')
plt.ylabel('$y = 2x + 5$')
plt.title('Linear plot')
plt.show()
```

2.42.2 Plotting a sine curve

```python
from numpy import pi, sin

x = np.arange(0, 2*pi, 0.01)
y = sin(x)
plt.plot(x, y)
plt.xlabel('x')
```
2.43 Multi-dimensional data

- Numpy arrays can hold multi-dimensional data.
- To create a multi-dimensional array, we can pass a list of lists to the `array()` function:

```python
import numpy as np
x = np.array([[1, 2], [3, 4]])
x
```

```
array([[1, 2],
       [3, 4]])
```

2.43.1 Arrays containing arrays

- A multi-dimensional array is an array of an arrays.
- The outer array holds the rows.
- Each row is itself an array:

```python
x[0]
```
array([1, 2])

i x[1]

array([3, 4])

- So the element in the second row, and first column is:

i x[1][0]

3

2.43.2 Matrices

- We can create a matrix from a multi-dimensional array.

```python
M = np.matrix(x)
M
```

matrix([[1, 2],
 [3, 4]])

2.43.3 Plotting multi-dimensional with matrices

- If we supply a matrix to `plot()` then it will plot the y-values taken from the columns of the matrix (notice the transpose in the example below).

```python
from numpy import pi, sin, cos
x = np.arange(0, 2*pi, 0.01)
y = sin(x)
ax = plt.plot(x, np.matrix([sin(x), cos(x)]).T)
plt.show()
```
2.43.4 Performance

- When we use numpy matrices in Python the corresponding functions are linked with libraries written in C and FORTRAN.
- For example, see the BLAS (Basic Linear Algebra Subprograms) library.
- These libraries are very fast.
- Vectorised code can be more easily ported to frameworks like TensorFlow so that operations are performed in parallel using GPU hardware.

2.43.5 Matrix Operators

- Once we have a matrix, we can perform matrix computations.
- To compute the transpose and inverse use the T and 1 attributes:

To compute the transpose M^T

```python
def matrix([[1, 3],
[2, 4]])
```

To compute the inverse M^{-1}

```python
def matrix([[-2., 1.],
[1.5, -0.5]])
```
2.43.6 Matrix Dimensions

- The total number of elements, and the dimensions of the array:

  ```
  M.size
  ```

4

  ```
  M.shape
  ```

(2, 2)

  ```
  len(M.shape)
  ```

2

2.43.7 Creating Matrices from strings

- We can also create arrays directly from strings, which saves some typing:

  ```
  I2 = np.matrix('2 0; 0 2')
  ```

  ```
  matrix([[2, 0],
          [0, 2]])
  ```

- The semicolon starts a new row.

2.43.8 Matrix Multiplication

Now that we have two matrices, we can perform matrix multiplication:

  ```
  M * I2
  ```

  ```
  matrix([[2, 4],
          [6, 8]])
  ```

2.43.9 Matrix Indexing

- We can index and slice matrices using the same syntax as lists.

  ```
  M[:,1]
  ```

  ```
  matrix([[2],
          [4]])
  ```

2.43.10 Slices are references

- If we use this is an assignment, we create a reference to the sliced elements, not a copy.
V = M[:,1] # This does not make a copy of the elements!
V

matrix([[2],
 [4]])

M[0,1] = -2
V

matrix([[-2],
 [4]])

2.43.11 Copying matrices and vectors

- To copy a matrix, or a slice of its elements, use the function np.copy():

M = np.matrix(['1 2; 3 4'])
V = np.copy(M[:,1]) # This does copy the elements.
V

array([[2],
 [4]])

M[0,1] = -2
V

array([[2],
 [4]])

2.44 Sums

One way we could sum a vector or matrix is to use a for loop.

vector = np.arange(0.0, 100.0, 10.0)

array([0., 10., 20., 30., 40., 50., 60., 70., 80., 90.])

result = 0.0
for x in vector:
 result = result + x
result

450.0

- This is not the most efficient way to compute a sum.
2.45 Efficient sums

- Instead of using a for loop, we can use a numpy function `sum()`.
- This function is written in the C language, and is very fast.

```python
vector = np.array([0, 1, 2, 3, 4])
print(np.sum(vector))
```

10

2.46 Summing rows and columns

- When dealing with multi-dimensional data, the `sum()` function has a named-argument `axis` which allows us to specify whether to sum along, each rows or columns.

```python
matrix = np.matrix('1 2 3; 4 5 6; 7 8 9')
print(matrix)
```

```
[[1 2 3]
 [4 5 6]
 [7 8 9]]
```

2.46.1 To sum along rows:

```python
np.sum(matrix, axis=0)
```

```
matrix([[12, 15, 18]])
```

2.46.2 To sum along columns:

```python
np.sum(matrix, axis=1)
```

```
matrix([[ 6],
        [15],
        [24]])
```

2.47 Cumulative sums

- Suppose we want to compute $y_n = \sum_{i=1}^n x_i$ where \vec{x} is a vector.

```python
import numpy as np
x = np.array([0, 1, 2, 3, 4])
y = np.cumsum(x)
print(y)
```

```
[0 1 3 6 10]
```

2.48 Cumulative sums along rows and columns
Similarly we can compute $y_n = \prod_{i=1}^{n} x_i$ using cumprod():

```python
import numpy as np
x = np.array([1, 2, 3, 4, 5])
np.cumprod(x)
```

```
array([ 1,  2,  6, 24, 120])
```

We can compute cumulative products along rows and columns using the `axis` parameter, just as with the `cumsum()` example.

2.50 Generating (pseudo) random numbers

The nested module `numpy.random` contains functions for generating random numbers from different probability distributions.

```python
from numpy.random import normal, uniform, exponential, randint
```

Suppose that we have a random variable $\epsilon \sim N(0,1)$.

In Python we can draw from this distribution like so:

```python
epsilon = normal()
epsilon
```

```
0.1465312427787133
```

If we execute another call to the function, we will make a new draw from the distribution:
2.51 Pseudo-random numbers

- Strictly speaking, these are not random numbers.
- They rely on an initial state value called the seed.
- If we know the seed, then we can predict with total accuracy the rest of the sequence, given any “random” number.
- Nevertheless, statistically they behave like independently and identically-distributed values.
 - Statistical tests for correlation and auto-correlation give insignificant results.
- For this reason they called pseudo-random numbers.
- The algorithms for generating them are called Pseudo-Random Number Generators (PRNGs).
- Some applications, such as cryptography, require genuinely unpredictable sequences.
 - never use a standard PRNG for these applications!

2.52 Managing seed values

- In some applications we need to reliably reproduce the same sequence of pseudo-random numbers that were used.
- We can specify the seed value at the beginning of execution to achieve this.
- Use the function `seed()` in the `numpy.random` module.

2.53 Setting the seed

```python
from numpy.random import seed

seed(5)

normal()
0.44122748688504143

normal()

seed(5)

- 0.33087015189408764

seed(5)
```
2.54 Drawing multiple variates

- To generate more than number, we can specify the `size` parameter:

  ```python
  normal(size=10)
  ```

  ```
  array([ 2.43077119, -0.25209213, 0.10960984, 1.58248112, -0.9092324 ,
        -0.59163666, 0.18760323, -0.32986996, -1.19276461, -
        0.20487651])
  ```

- If you are generating very many variates, this will be much faster than using a for loop
- We can also specify more than one dimension:

  ```python
  normal(size=(5,5))
  ```

  ```
  array([[-0.35882895, 0.6034716 , -1.66478853, -0.70017904, 1.15139101],
         [ 1.85733101, -1.51117956, 0.64484751, -0.98060789, -
         0.85685315],
         [-0.87187918, -0.42250793, 0.99643983, 0.71242127, 0.05914424],
         [-0.36331088, 0.00328884, -0.10593044, 0.79305332, -
         0.63157163],
         [-0.00619491, -0.10106761, -0.05230815, 0.24921766, 0.19766009]])
  ```

2.55 Histograms

- We can plot a histograms of randomly-distributed data using the `hist()` function from matplotlib:

  ```python
  import matplotlib.pyplot as plt
  data = normal(size=10000)
  ax = plt.hist(data)
  plt.title('Histogram of normally distributed data ($n=10^5$)'
  plt.show()
  ```
2.56 Computing histograms as matrices

- The function `histogram()` in the `numpy` module will count frequencies into bins and return the result as a 2-dimensional array.

```python
import numpy as np
np.histogram(data)
```

(array([23, 136, 618, 1597, 2626, 2635, 1620, 599, 130, 16]),
array([-3.59780883, -2.87679609, -2.15578336, -1.43477063, -
 0.71375789,
 0.00725484, 0.72826758, 1.44928031, 2.17029304,
 2.89130578,
 3.61231851]))

2.57 Descriptive statistics

- We can compute the descriptive statistics of a sample of values using the `numpy` functions `mean()` and `var()` to compute the sample mean \(\bar{X} \) and sample variance \(\sigma^2_X \).

```python
np.mean(data)
```

```
0.0004546108033497925
```

```python
np.var(data)
```
• These functions also have an axis parameter to compute mean and variances of columns or rows of a multi-dimensional data-set.

2.58 Descriptive statistics with nan values

• If the data contains nan values, then the descriptive statistics will also be nan.

```python
from numpy import nan
import numpy as np

data = np.array([1, 2, 3, 4, nan])
np.mean(data)
```

• To omit nan values from the calculation, use the functions nanmean() and nanvar():

```python
np.nanmean(data)
```

2.59 Discrete random numbers

• The randint() function in numpy.random can be used to draw from a uniform discrete probability distribution.

• It takes two parameters: the low value (inclusive), and the high value (exclusive).

• So to simulate one roll of a die, we would use the following Python code.

```python
die_roll = randint(0, 6) + 1
die_roll
```

• Just as with the normal() function, we can generate an entire sequence of values.

• To simulate a Bernoulli process with \(n = 20 \) trials:

```python
bernoulli_trials = randint(0, 2, size = 20)
bernoulli_trials
```

array([1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0])

Acknowledgements

The early sections of this notebook were adapted from an online article by Steve Hollasch.
3 Financial data with data frames

(c) 2019 Steve Phelps

3.1 Data frames

- The pandas module provides a powerful data-structure called a data frame.
- It is similar, but not identical to:
 - a table in a relational database,
 - an Excel spreadsheet,
 - a dataframe in R.

3.1.1 Types of data

Data frames can be used to represent:

- Panel data
- Time series data
- Relational data

3.1.2 Loading data

- Data frames can be read and written to/from:
 - financial web sites
 - database queries
 - database tables
 - CSV files
 - json files
- Beware that data frames are memory resident;
 - If you read a large amount of data your PC might crash
 - With big data, typically you would read a subset or summary of the data via e.g. a select statement.

3.2 Importing pandas

- The pandas module is usually imported with the alias pd.

```python
import pandas as pd
```

3.3 Series

- A Series contains a one-dimensional array of data, and an associated sequence of labels called the index.
- The index can contain numeric, string, or date/time values.
- When the index is a time value, the series is a time series.
- The index must be the same length as the data.
- If no index is supplied it is automatically generated as `range(len(data))`.
3.3.1 Creating a series from an array

```python
import numpy as np
data = np.random.randn(5)
data
```

```python
array([ 0.03245675,  0.41263151, -0.27993028, -0.95398035, -0.01473876])
```

```python
my_series = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])
my_series
```

```
a    0.032457
b    0.412632
c   -0.279930
d   -0.953980
e    -0.014739
dtype: float64
```

3.3.2 Plotting a series

- We can plot a series by invoking the `plot()` method on an instance of a `Series` object.
- The x-axis will automatically be labelled with the series index.

```python
import matplotlib.pyplot as plt
my_series.plot()
plt.show()
```
3.3.3 Creating a series with automatic index

- In the following example the index is creating automatically:

```python
pd.Series(data)
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.032457</td>
</tr>
<tr>
<td>1</td>
<td>0.412632</td>
</tr>
<tr>
<td>2</td>
<td>-0.279930</td>
</tr>
<tr>
<td>3</td>
<td>-0.953980</td>
</tr>
<tr>
<td>4</td>
<td>-0.014739</td>
</tr>
</tbody>
</table>

dtype: float64

3.3.4 Creating a Series from a dict

```python
d = {'a': 0., 'b': 1., 'c': 2.}
my_series = pd.Series(d)
my_series
```

a 0.0
b 1.0
c 2.0
dtype: float64

3.3.5 Indexing a series with []

- Series can be accessed using the same syntax as arrays and dicts.
- We use the labels in the index to access each element.

```python
my_series['b']
```

1.0

- We can also use the label like an attribute:

```python
my_series.b
```

1.0

3.3.6 Slicing a series

- We can specify a range of labels to obtain a slice:

```python
my_series[['b', 'c']]
```

b 1.0
c 2.0
dtype: float64

3 Financial data with data frames

59
3.4 Arithmetic and vectorised functions

- numpy vectorization works for series objects too.

```python
1  d = {'a': 0., 'b': 1., 'c': 2.}
2  squared_values = pd.Series(d) ** 2
3  squared_values

  a    0.0
b    1.0
c    4.0
dtype: float64

x = pd.Series({'a': 0., 'b': 1., 'c': 2.})
y = pd.Series({'a': 3., 'b': 4., 'c': 5.})
x + y

  a    3.0
b    5.0
c    7.0
dtype: float64
```

3.5 Time series

```python
1  dates = pd.date_range('1/1/2000', periods=5)
2  dates

               '2000-01-05'],
             dtype='datetime64[ns]', freq='D')

time_series = pd.Series(data, index=dates)
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.032457</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.412632</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-0.279930</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.953980</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.014739</td>
</tr>
</tbody>
</table>

Freq: D, dtype: float64

3.5.1 Plotting a time-series

```python
1  ax = time_series.plot()
```
3.6 Missing values

- Pandas uses `nan` to represent missing data.
- So `nan` is used to represent missing, invalid or unknown data values.
- It is important to note that this only convention only applies within pandas.
 - Other frameworks have very different semantics for these values.

3.7 DataFrame

- A data frame has multiple columns, each of which can hold a *different* type of value.
- Like a series, it has an index which provides a label for each and every row.
- Data frames can be constructed from:
 - dict of arrays,
 - dict of lists,
 - dict of dict
 - dict of Series
 - 2-dimensional array
 - a single Series
 - another DataFrame

3.8 Creating a dict of series

```python
series_dict = {
    'x': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
}```
When plotting a data frame, each column is plotted as its own series on the same graph.

• The column names are used to label each series.
• The row names (index) is used to label the x-axis.

ax = df.plot()
3.11 Indexing

- The outer dimension is the column index.
- When we retrieve a single column, the result is a Series

```python
: df['x']
```

```
a 1.0
b 2.0
c 3.0
d NaN
Name: x, dtype: float64
```

```python
: df['x']['b']
```

```
2.0
```

```python
: df.x.b
```

```
2.0
```

3.12 Projections

- Data frames can be sliced just like series.
- When we slice columns we call this a projection, because it is analogous to specifying a subset of attributes in a relational query, e.g. SELECT x FROM table.
- If we project a single column the result is a series:
3.13 Projecting multiple columns

- When we include multiple columns in the projection the result is a DataFrame.

```python
slice = df[['x', 'y']]
slice
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.0</td>
</tr>
<tr>
<td>b</td>
<td>2.0</td>
</tr>
<tr>
<td>c</td>
<td>3.0</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
</tr>
</tbody>
</table>

```python
type(slice)
```

pandas.core.frame.DataFrame

3.14 Vectorization

- Vectorized functions and operators work just as with series objects:

```python
df['x'] + df['y']
```

a	5.0
b	7.0
c	9.0
d	NaN

dtype: float64

```python
df ** 2
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.0</td>
<td>16.0</td>
</tr>
<tr>
<td>b</td>
<td>4.0</td>
<td>25.0</td>
</tr>
<tr>
<td>c</td>
<td>9.0</td>
<td>36.0</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>49.0</td>
</tr>
</tbody>
</table>

3 Financial data with data frames
3.15 Logical indexing

- We can use logical indexing to retrieve a subset of the data.

```python
In [1]: df['x'] >= 2
Out[1]
```

a	False
b	True
c	True
d	False
Name: x, dtype: bool

```python
In [2]: df[df['x'] >= 2]
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>c</td>
<td>3.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

3.16 Descriptive statistics

- To quickly obtain descriptive statistics on numerical values use the `describe` method.

```python
In [3]: df.describe()
```

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>3.0 4.0000000</td>
<td>4.0000000</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2.0 5.5000000</td>
<td>0.250000</td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>1.0 1.290994</td>
<td>0.129099</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>1.0 4.0000000</td>
<td>0.100000</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>1.5 4.7500000</td>
<td>0.175000</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>2.0 5.5000000</td>
<td>0.250000</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>2.5 6.2500000</td>
<td>0.325000</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>3.0 7.0000000</td>
<td>0.400000</td>
<td></td>
</tr>
</tbody>
</table>

3.17 Accessing a single statistic

- The result is itself a DataFrame, so we can index a particular statistic like so:

```python
In [4]: df.describe()['x']['mean']
```

2.0

3.18 Accessing the row and column labels

- The row labels (index) and column labels can be accessed:

```python
In [5]: df.index
```
Index(['a', 'b', 'c', 'd'], dtype='object')

: df.columns

Index(['x', 'y', 'z'], dtype='object')

### 3.19 Head and tail

- Data frames have `head()` and `tail()` methods which behave analogously to the Unix commands of the same name.

### 3.20 Financial data

- Pandas was originally developed to analyse financial data.
- We can download tabulated data in a portable format called **Comma Separated Values (CSV)**.

```python
import pandas as pd
gool = pd.read_csv('data/GOOGL.csv')
```

#### 3.20.1 Examining the first few rows

- When working with large data sets it is useful to view just the first/last few rows in the dataset.
- We can use the `head()` method to retrieve the first rows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-11-13</td>
<td>503.878876</td>
<td>516.941956</td>
<td>503.753754</td>
<td>516.751770</td>
<td></td>
</tr>
<tr>
<td>2013-11-14</td>
<td>517.477478</td>
<td>520.395386</td>
<td>515.690674</td>
<td>518.133118</td>
<td></td>
</tr>
<tr>
<td>2013-11-15</td>
<td>517.952942</td>
<td>519.519531</td>
<td>515.670654</td>
<td>517.297302</td>
<td></td>
</tr>
<tr>
<td>2013-11-18</td>
<td>518.393372</td>
<td>524.894897</td>
<td>515.135132</td>
<td>516.291321</td>
<td></td>
</tr>
<tr>
<td>2013-11-19</td>
<td>516.376404</td>
<td>517.892883</td>
<td>512.037048</td>
<td>513.113098</td>
<td></td>
</tr>
<tr>
<td>2013-11-20</td>
<td>517.457404</td>
<td>518.195372</td>
<td>515.135132</td>
<td>516.291321</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>3155600</td>
</tr>
<tr>
<td>2331000</td>
</tr>
<tr>
<td>2550000</td>
</tr>
<tr>
<td>3515800</td>
</tr>
<tr>
<td>2260900</td>
</tr>
</tbody>
</table>

#### 3.20.2 Examining the last few rows
3.20.3 Converting to datetime values

- So far, the Date attribute is of type string.

```python
googl.Date[0]
```

'2013-11-13'

```python
type(googl.Date[0])
```

str

- In order to work with time-series data, we need to construct an index containing time values.
- Time values are of type datetime or Timestamp.
- We can use the function to_datetime() to convert strings to time values.

```python
pd.to_datetime(googl['Date']).head()
```

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2013-11-13</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2013-11-14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2013-11-15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2013-11-18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2013-11-19</td>
<td></td>
</tr>
</tbody>
</table>

Name: Date, dtype: datetime64[ns]

3.20.4 Setting the index

- Now we need to set the index of the data-frame so that it contains the sequence of dates.

```python
googl.set_index(pd.to_datetime(googl['Date']), inplace=True)
googl.index[0]
```
We can plot a series in a dataframe by invoking its `plot()` method.

Here we plot a time-series of the daily traded volume:

```python
tax = goog1.index[0]
type(goog1.index[0])
pandas._libs.tslibs.timestamps.Timestamp
```

3.20.6 Adjusted closing prices as a time series

```python
goo1['Adj Close'].plot()
plt.show()
```
3.20.7 Slicing series using date/time stamps

- We can slice a time series by specifying a range of dates or times.
- Date and time stamps are specified strings representing dates in the required format.

```python
goog1['Adj Close']["1-1-2016":"1-1-2017"]= plt.show()
```
3.20.8 Resampling

- We can resample to obtain e.g. weekly or monthly prices.
- In the example below the ‘W’ denotes weekly.
- See the documentation for other frequencies.
- We group data into weeks, and then take the last value in each week.
- For details of other ways to resample the data, see the documentation.

3.20.8.1 Resampled time-series plot

```python
weekly_prices = goog1[‘Adj Close’].resample(‘W’).last()
weekly_prices.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Adj Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-11-17</td>
<td>517.297302</td>
</tr>
<tr>
<td>2013-11-24</td>
<td>516.461487</td>
</tr>
<tr>
<td>2013-12-01</td>
<td>530.325317</td>
</tr>
<tr>
<td>2013-12-08</td>
<td>535.470459</td>
</tr>
<tr>
<td>2013-12-15</td>
<td>530.925903</td>
</tr>
</tbody>
</table>

Freq: W-SUN, Name: Adj Close, dtype: float64

```python
weekly_prices.plot()
plt.title(‘Prices for GOOGL sampled at weekly frequency’)
plt.show()
```
3.20.9 Converting prices to log returns

```python
weekly_rets = np.diff(np.log(weekly_prices))
plt.plot(weekly_rets)
plt.x_label('t'); plt.ylabel('r_t')
plt.title('Weekly log-returns for GOOGL')
plt.show()
```

3.20.10 Converting the returns to a series

- Notice that in the above plot the time axis is missing the dates.
- This is because the np.diff() function returns an array instead of a data-frame.

```python
type(weekly_rets)
```

```
numpy.ndarray
```

- We can convert it to a series thus:

```python
weekly_rets_series = pd.Series(weekly_rets, index=weekly_prices.index[1:])
weekly_rets_series.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-11-24</td>
<td>-0.001617</td>
</tr>
<tr>
<td>2013-12-01</td>
<td>0.026490</td>
</tr>
<tr>
<td>2013-12-08</td>
<td>0.009655</td>
</tr>
<tr>
<td>2013-12-15</td>
<td>-0.008523</td>
</tr>
<tr>
<td>2013-12-22</td>
<td>0.036860</td>
</tr>
</tbody>
</table>
Freq: W-SUN, dtype: float64

3.20.10.1 Plotting with the correct time axis  Now when we plot the series we will obtain the correct time axis:

```python
plt.plot(weekly_rets_series)
plt.title('GOOGL weekly log-returns'); plt.xlabel('t'); plt.ylabel('r_{t}')
plt.show()
```

![GOOGL weekly log-returns](image)

3.20.11 Plotting a return histogram

```python
weekly_rets_series.hist()
plt.show()
```
```python
weekly_rets_series.describe()
```

count 313.000000
mean 0.002937
std 0.032039
min -0.099918
25% -0.013341
50% 0.004653
75% 0.021327
max 0.229571
dtype: float64
4 Statistics and optimization with SciPy

4.1 The SciPy library

- SciPy is a library that provides several modules for scientific computing.
- You can read more about it by reading the reference guide.
- It provides modules for:
  - Solving optimization problems.
  - Linear algebra.
  - Interpolation.
  - Statistical inference.
  - Fourier transform.
  - Numerical differentiation and integration.

4.2 Overview

1. loading data with pandas,
2. computing returns,
3. Quantile-Quantile (q-q) plots,
4. The Jarque-Bera test for normally-distributed data,
5. ordinary-least squares (OLS) regression.
6. Portfolio optimization

4.3 Loading data into a pandas dataframe

- We will first obtain some data from Yahoo finance using the pandas library.
- First we will import the functions and modules we need.

```python
import matplotlib.pyplot as plt
import datetime
import pandas as pd
import numpy as np
```

4.4 Downloading price data using as CSV

- Here we obtain price data on Microsoft Corporation Common Stock, so we specify the symbol MSFT.

```python
def prices_from_csv(fname):
 df = pd.read_csv(fname)
 df.set_index(pd.to_datetime(df['Date']), inplace=True)
 return df

msft = prices_from_csv('data/MSFT.csv')
msft.head()
```

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj Close</td>
<td>\</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>2002-07-01</td>
<td>2002-07-01</td>
<td>27.059999</td>
<td>27.195000</td>
<td>26.290001</td>
</tr>
</tbody>
</table>

```
We will resample the data at a frequency of one calendar month.

The code below takes the last price in every month.

4.6 Converting to monthly data

- We will resample the data at a frequency of one calendar month.
- The code below takes the last price in every month.
```python
daily_prices = msft['Adj Close']
monthly_prices = daily_prices.resample('M').last()
plt.plot()
plt.ylabel('MSFT Price')
plt.show()
```

4.7 Calculating log returns
```python
stock_returns = np.diff(np.log(monthly_prices))
plt.plot(stock_returns)
plt.xlabel('t'); plt.ylabel('$r_t$')
plt.title('Monthly returns for MSFT')
plt.show()
```
4.8 Converting the returns to a data frame

```
stock_returns_df = pd.DataFrame({'MSFT monthly returns':
    stock_returns}, index=monthly_prices.index[1:])
stock_returns_df.tail()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>MSFT monthly returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-07-31</td>
<td>0.017097</td>
</tr>
<tr>
<td>2019-08-31</td>
<td>0.014925</td>
</tr>
<tr>
<td>2019-09-30</td>
<td>0.008451</td>
</tr>
<tr>
<td>2019-10-31</td>
<td>0.030739</td>
</tr>
<tr>
<td>2019-11-30</td>
<td>0.025480</td>
</tr>
</tbody>
</table>

```
stock_returns_df.plot()
plt.show()
```
4.9 Return histogram

```python
stock_returns_df.hist()
plt.show()
```
4.10 Descriptive statistics of the return distribution

```python
stock_returns_df.describe()
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>208.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.010822</td>
</tr>
<tr>
<td>std</td>
<td>0.064673</td>
</tr>
<tr>
<td>min</td>
<td>-0.178358</td>
</tr>
<tr>
<td>25%</td>
<td>-0.031284</td>
</tr>
<tr>
<td>50%</td>
<td>0.018196</td>
</tr>
<tr>
<td>75%</td>
<td>0.051398</td>
</tr>
<tr>
<td>max</td>
<td>0.222736</td>
</tr>
</tbody>
</table>

4.11 Summarising the distribution using a boxplot

```python
stock_returns_df.boxplot()
plt.show()
```

4.12 Q-Q plots

- Quantile-Quantile (Q-Q) plots are a useful way to compare distributions.
- We plot empirical quantiles against the quantiles computed the inverted c.d.f. of a specified theoretical distribution.

```python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

stats.probplot(stock_returns, dist="norm", plot=plt)
```
4.13 The Jarque-Bera Test

- The Jarque-Bera (JB) test is a statistical test that can be used to test whether a given sample was drawn from a normal distribution.
- The null hypothesis is that the data have the same skewness (0) and kurtosis (3) as a normal distribution.
- The test statistic is:

\[
JB = \frac{n}{6} (S^2 + \frac{1}{4} (K - 3)^2)
\]

(4.1)

where \(S\) is the sample skewness, \(K\) is the sample kurtosis, and \(n\) is the number of observations.
- It is implemented in `scipy.stats.jarque_bera()`.

4.14 The Jarque-Bera test using a bootstrap

- We can test against the null hypothesis of \(S=0\) and \(K=3\).
- A finite sample can exhibit non-zero skewness and excess kurtosis simply due to sample noise, even if the distribution is Gaussian.
• What is the distribution of the sum of the squared sample skewness and kurtosis under repeated
sampling?
• We can answer this question using a Monte-Carlo method called bootstrapping.
 – Note that this is very expensive, and we would not always do this in practice (see the subse-
quint slides).

4.14.1 Bootstrap code

```python
from scipy.stats import skew, kurtosis

def jb(n, s, k):
    return n / 6. * (s**2 + (((k - 3.))**2) / 4.)

def jb_from_samples(n, bootstrap_samples):
    s = skew(bootstrap_samples)
    k = kurtosis(bootstrap_samples, fisher=False)
    return jb(n, s, k)
```

4.15 The distribution of the test-statistic under the null hypothesis

```python
bootstrap_replications = 10000
n = 10  # Sample size
test_statistic_null = jb_from_samples(n, np.random.normal(size=(n,
                                      bootstrap_replications)))
plt.hist(test_statistic_null, bins=100)
plt.title('JB test-statistic under null hypothesis from bootstrap (n=10)'); plt.xlabel('$JB$')
plt.show()
```
4.16 The critical value

- The 95-percentile can be computed from the bootstrap data.
- This is called the critical value for $p = 0.05$.

```python
critical_value = np.percentile(test_statistic_null, 95)
critical_value
```

2.5370999432580295

- This is the value of $J_{B_{crit}}$ such that area underneath the p.d.f. over the interval $[0, J_{B_{crit}}]$ sums to 0.95 (95% of the area under the curve).
- The corresponding p-value is $1 - 0.95 = 0.05$.

4.17 Rejecting the null hypothesis

- When we test an empirical sample, we compute its sample skewness and kurtosis, and the corresponding value of the test statistic $J_{B_{data}}$.
- We reject the null hypothesis iff. $J_{B_{data}} > J_{B_{crit}}$:

```python
def jb_critical_value(n, bootstrap_samples, p):
    return np.percentile(jb_from_samples(n, bootstrap_samples), (1. - p) * 100.)
def jb_test(data_sample, bootstrap_replications=100000, p=0.05):
    sample_size = len(data_sample)
    bootstrap_samples = np.random.normal(size=(sample_size,
```
4.17.1 Test data from a normal distribution

```python
x = np.random.normal(size=2000)
jb_test(x)
```

(True, 589546.3684834961, 5.968889385720822)

4.17.2 Test data from a log-normal distribution

```python
jb_test(np.exp(x))
```

(False, 0.3436442928512375, 5.958443087793155)

4.18 Critical-values from a Chi-Squared table

- The code on the previous slide is not very efficient, since we have to perform a lengthy bootstrap operation each time we test a data sample.
- For $n > 2000$, the distribution of the test statistic follows a Chi-squared distribution with two degrees of freedom ($k = 2$), so we can look up the critical values for any given confidence level (p-value) using a Chi-Squared table.
- For smaller n we must resort to a bootstrap.

4.19 Producing a table of table critical values from a bootstrap

```python
n = 10
bootstrap_samples = np.random.normal(size=(n, 300000))
confidence_levels = np.array([0.025, 0.05, 0.10, 0.20])
critical_values = np.vectorize(lamda p: jb_critical_value(n, bootstrap_samples, p))(confidence_levels)
critical_values_df = pd.DataFrame({'critical value (n=10)': critical_values}, index=confidence_levels)
critical_values_df.index.name = 'p-value'
critical_values_df
```

<table>
<thead>
<tr>
<th>p-value</th>
<th>critical value (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>3.728356</td>
</tr>
<tr>
<td>0.050</td>
<td>2.518205</td>
</tr>
<tr>
<td>0.100</td>
<td>1.620483</td>
</tr>
<tr>
<td>0.200</td>
<td>1.125069</td>
</tr>
</tbody>
</table>
• If we save this data-frame permanently, then we do not need to re-compute the critical value for the given sample size.
• We can simply calculate the test-statistic from the data sample, and see whether the value thus obtained exceeds the critical value for the chosen level of confidence (p-value).

4.20 Using the jarque_bera function in scipy

• The function scipy.stats.jarque_bera() contains code already written to implement the Jarque-Bera (JB) test.
• It computes the p-value from the cdf. of the Chi-Squared distribution and the empirical test-statistic.
• This assumes a large sample \(n \geq 2000 \).
• The variable test_statistic returned below is the value of JB calculated from the empirical data sample.
• If the p-value in the result is \(\leq 0.05 \) then we reject the null hypothesis at 95% confidence.
• The null hypothesis is that the data are drawn from a distribution with skew 0 and kurtosis 3.

```python
import scipy.stats
x = np.random.normal(size=2000)
(test_statistic, p_value) = scipy.stats.jarque_bera(x)
print("JB test statistic = %f" % test_statistic)
print("p-value = %f" % p_value)
```

```
JB test statistic = 0.096519
p-value = 0.952887
```

4.21 Testing the empirical data

```python
len(stock_returns)
```

```
208
```

```python
scipy.stats.jarque_bera(stock_returns)
```

```
(6.19438331072041, 0.04517589389305776)
```

4.22 The single-index model

\[
\begin{align*}
r_{i,t} - r_f &= \alpha_i + \beta_i(r_{m,t} - r_f) + \epsilon_{i,t} \\
\epsilon_{i,t} &\sim N(0, \sigma_i)
\end{align*}
\]

- \(r_{i,t} \) is return to stock \(i \) in period \(t \).
- \(r_f \) is the risk-free rate.
- \(r_{m,t} \) is the return to the market portfolio.

4.23 Estimating the single-index model

- We will first obtain data on the market index: in this case the NASDAQ:

```python	nasdaq_index = prices_from_csv('data/NDX.csv')
nasdaq_index.head()
```

<table>
<thead>
<tr>
<th>Close \ Date</th>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-07-01</td>
<td>2002-07-01</td>
<td>1044.479980</td>
<td>1049.880005</td>
<td>997.969971</td>
</tr>
<tr>
<td>998.169983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-07-02</td>
<td>2002-07-02</td>
<td>989.250000</td>
<td>993.989990</td>
<td>961.760010</td>
</tr>
<tr>
<td>963.659973</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-07-03</td>
<td>2002-07-03</td>
<td>957.260010</td>
<td>995.950012</td>
<td>950.330017</td>
</tr>
<tr>
<td>995.679993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-07-05</td>
<td>2002-07-05</td>
<td>1018.630005</td>
<td>1061.050049</td>
<td>1018.630005</td>
</tr>
<tr>
<td>1060.890015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-07-08</td>
<td>2002-07-08</td>
<td>1051.270020</td>
<td>1066.280029</td>
<td>1008.780029</td>
</tr>
<tr>
<td>1014.330017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adj Close \ Date</th>
<th>Date</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-07-01</td>
<td>998.169983</td>
<td>2320650000</td>
</tr>
<tr>
<td>2002-07-02</td>
<td>963.659973</td>
<td>2722550000</td>
</tr>
<tr>
<td>2002-07-03</td>
<td>995.679993</td>
<td>2661060000</td>
</tr>
<tr>
<td>2002-07-05</td>
<td>1060.890015</td>
<td>1120960000</td>
</tr>
<tr>
<td>2002-07-08</td>
<td>1014.330017</td>
<td>1708150000</td>
</tr>
</tbody>
</table>

4.24 Converting to monthly data

- As before, we can resample to obtain monthly data.

```python
nasdaq_monthly_prices = nasdaq_index['Adj Close'].resample('M').last()
nasdaq_monthly_prices.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Adj Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-07-31</td>
<td>962.099976</td>
</tr>
<tr>
<td>2002-08-31</td>
<td>942.380005</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>832.520020</td>
</tr>
<tr>
<td>2002-10-31</td>
<td>989.539978</td>
</tr>
<tr>
<td>2002-11-30</td>
<td>1116.099976</td>
</tr>
</tbody>
</table>

Freq: M, Name: Adj Close, dtype: float64

4.25 Plotting monthly returns

```python
index_log_returns = np.diff(np.log(nasdaq_monthly_prices))
index_log_returns_df = pd.DataFrame({'NASDAQ monthly returns': index_log_returns}, index=nasdaq_monthly_prices.index[1:])
plt.plot(index_log_returns_df)
```
4.26 Converting to simple returns

```python
index_simple_returns_df = np.exp(index_log_returns_df) - 1.
plt.plot(index_simple_returns_df)
plt.title('NASDAQ monthly simple returns')
plt.show()
```
4.27 Concatenating data into a single data frame

- We will now concatenate the data into a single data frame.
- We can use `pd.concat()`, specifying an axis of 1 to merge data along columns.
- This is analogous to performing an `zip()` operation.

```python
comparison_df = pd.concat([index_simple_returns_df,
                          stock_simple_returns_df], axis=1)
comparison_df.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>NASDAQ monthly returns</th>
<th>MSFT monthly returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>-0.020497</td>
<td>0.022926</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.116577</td>
<td>-0.108802</td>
</tr>
<tr>
<td>2002-10-31</td>
<td>0.188608</td>
<td>0.222450</td>
</tr>
<tr>
<td>2002-11-30</td>
<td>0.127898</td>
<td>0.078736</td>
</tr>
<tr>
<td>2002-12-31</td>
<td>-0.118027</td>
<td>-0.103676</td>
</tr>
</tbody>
</table>

4.28 Scatter plots

- We can produce a scatter plot to see whether there is any relationship between the stock returns, and the index returns.
- There are two ways to do this:
 1. Use the function `scatter()` in `matplotlib.pyplot`
 2. Invoke the `plot()` method on a data frame, passing `kind='scatter'`
4.29 Scatter plots using the `plot()` method of a data frame

- In the example below, the x and y named arguments refer to column numbers of the data frame.
- Notice that the `plot()` method is able to infer the labels automatically.

```python
comparison_df.plot(x=0, y=1, kind='scatter')
plt.show()
```

4.30 Computing the correlation matrix

- For random variables X and Y, the Pearson correlation coefficient is:

$$
\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} \tag{4.4}
$$

$$
= \frac{E[(X - \mu_x)(Y - \mu_y)]}{\sigma_X \sigma_Y} \tag{4.5}
$$

$$
= \frac{E[(X - \mu_x)(Y - \mu_y)]}{\sigma_X \sigma_Y} \tag{4.6}
$$

4.31 Covariance and correlation of a data frame

- We can invoke the `cov()` and `corr()` methods on a data frame.

```python
comparison_df.cov()
```

<table>
<thead>
<tr>
<th></th>
<th>NASDAQ monthly returns</th>
<th>MSFT monthly returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASDAQ monthly returns</td>
<td>0.002675</td>
<td>0.002243</td>
</tr>
</tbody>
</table>

4 Statistics and optimization with SciPy
4.32 Comparing multiple attributes in a data frame

- It is often useful to work with more than two variables.
- We can add columns (attributes) to our data frame.
- Many of the methods we are using will automatically incorporate the additional variables into the analysis.

4.33 Using a function to compute returns

- The code below defines a function which will return a data frame containing a single series of returns for the specified symbol, and sampled over the specified frequency.

```python
def returns_df(symbol, frequency='M'):
    df = prices_from_csv('~/Downloads/%s.csv' % symbol)
    prices = df['Adj Close'].resample(frequency).last()
    column_name = symbol + ' returns (' + frequency + ')
    return pd.DataFrame({column_name: np.exp(np.diff(np.log(prices)) - 1.)},
                        index=prices.index[1:])
```

```python
apple_returns = returns_df('AAPL')
apple_returns.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>AAPL returns (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>-0.033421</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.016949</td>
</tr>
<tr>
<td>2002-10-31</td>
<td>0.108276</td>
</tr>
<tr>
<td>2002-11-30</td>
<td>-0.035470</td>
</tr>
<tr>
<td>2002-12-31</td>
<td>-0.075484</td>
</tr>
</tbody>
</table>

4.34 Adding another stock to the portfolio

```python
comparison_df = pd.concat([comparison_df, apple_returns], axis=1)
comparison_df.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>NASDAQ monthly returns</th>
<th>MSFT monthly returns</th>
<th>AAPL returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>-0.020497</td>
<td>0.022926</td>
<td>-</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.116577</td>
<td>-0.108802</td>
<td>-</td>
</tr>
<tr>
<td>0.033421</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Statistics and optimization with SciPy
4.35 Boxplots without outliers

```python
plt.figure(figsize=(8, 6))
comparison_df.boxplot(showfliers=False)
plt.show()
```
4.36 Scatter matrices

```python
pd.plotting.scatter_matrix(comparison_df, figsize=(8, 6))
plt.show()
```
We can use Kernel density estimation (KDE) to plot an approximation of the pdf.

```python
pd.plotting.scatter_matrix(comparison_df, diagonal='kde', figsize=(8, 6))
plt.show()
```

4.37 Scatter matrices with Kernel-density plots

- We can use Kernel density estimation (KDE) to plot an approximation of the pdf.
4.38 Ordinary-least squares

- For \(n \) observations \((x_{1,j}, y_1), (x_{2,j}, y_2), \ldots, (x_{n,j}, y_n)\) over \(j \in \{1, 2, \ldots, p\} \) regressors:

\[
y_i = \alpha_i + \beta_1 x_{i,1} + \beta_2 x_{i,2} + x_{i,2} + \ldots + \beta_p x_{i,p} + \epsilon_i
\]

(4.7)

4.39 Ordinary-least squares estimation in Python

- First we import the stats module:

```python
import scipy.stats as stats
```

- Now we prepare the data set:

```python
rr = 0.01 # risk-free rate
xdata = stock_simple_returns_df.values[:, 0] - rr
ydata = index_simple_returns_df.values[:, 0] - rr
```

```python
regression_result = (beta, alpha, rvalue, pvalue, stderr) = \
    stats.linregress(ydata, xdata)
print(regression_result)
```

```python
LinregressResult(slope=0.8385169376111149, intercept
=0.0015326890415947839, rvalue=0.6626859398568364, pvalue
=1.126017711868404e-27, stderr=0.06602262800537023)
```

4 Statistics and optimization with SciPy
4.40 Plotting the fitted model

```python
plt.scatter(x=xdata, y=ydata)
plt.plot(ydata, alpha + beta * ydata)
plt.xlabel('index return')
plt.ylabel('stock return')
plt.title('Single-index model fit')
plt.show()
```

4.41 Regressing attributes of a data frame

- First we will create a new data frame containing the excess returns.

```python
excess_returns_df = comparison_df - rr
excess_returns_df.head()
```

<table>
<thead>
<tr>
<th>Date</th>
<th>NASDAQ monthly returns</th>
<th>MSFT monthly returns</th>
<th>AAPL returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>-0.030497</td>
<td>0.012926</td>
<td>-</td>
</tr>
<tr>
<td>0.043421</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.126577</td>
<td>-0.118802</td>
<td>-</td>
</tr>
<tr>
<td>0.026949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-10-31</td>
<td>0.178608</td>
<td>0.212450</td>
<td></td>
</tr>
<tr>
<td>0.098276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-11-30</td>
<td>0.117898</td>
<td>0.068736</td>
<td>-</td>
</tr>
<tr>
<td>0.045470</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Statistics and optimization with SciPy
4.42 Renaming the columns of a data frame

- We will now rename the columns to make the variable names easier to work with.

```python
> excess_returns_df.rename(columns={
"NASDAQ monthly returns": 'index',
"MSFT monthly returns": 'msft',
"AAPL returns (M)": 'aapl'},
inplace=True)
```

<table>
<thead>
<tr>
<th>Date</th>
<th>index</th>
<th>msft</th>
<th>aapl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>-0.030497</td>
<td>0.012926</td>
<td>-0.043421</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.126577</td>
<td>-0.118802</td>
<td>-0.026949</td>
</tr>
<tr>
<td>2002-10-31</td>
<td>0.178608</td>
<td>0.212450</td>
<td>0.098276</td>
</tr>
<tr>
<td>2002-11-30</td>
<td>0.117898</td>
<td>0.068736</td>
<td>-0.045470</td>
</tr>
<tr>
<td>2002-12-31</td>
<td>-0.128027</td>
<td>-0.113676</td>
<td>-0.085484</td>
</tr>
</tbody>
</table>

4.42.1 Fitting the model

```python
> import statsmodels.formula.api as sm
> result = sm.ols(formula = 'msft ~ index', data=excess_returns_df).
< fit()
```

4.42.2 The full regression results

```python
> print(result.summary())
```

<table>
<thead>
<tr>
<th>OLS Regression Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Variable:</td>
</tr>
<tr>
<td>Model:</td>
</tr>
<tr>
<td>Method:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Time:</td>
</tr>
<tr>
<td>No. Observations:</td>
</tr>
<tr>
<td>Df Residuals:</td>
</tr>
<tr>
<td>Df Model:</td>
</tr>
<tr>
<td>Covariance Type:</td>
</tr>
</tbody>
</table>

4 Statistics and optimization with SciPy 96
4.42.3 The intercept and coefficient

```python
print(result.params)
```

```
Intercept    0.001533
index        0.838517
dtype: float64
```

```python
coefficient = result.params['index']
```

```
0.8385169376111143
```

4.43 Portfolio optimization

- For a column vector w of portfolio weights, the portfolio return r_p is given by:

$$r_p = \sum_{i=1}^{n} w_i r_i$$

(4.8)

- The portfolio variance σ_p is given by:

$$\sigma_p = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_i \sigma_j = w^T \cdot K \cdot w$$

(4.9)

where K is the covariance matrix.
4.4.3.1 Portfolio mean and variance in Python

- We can write the equation from the previous slide as a Python function:

```python
def portfolio_mean_var(w, R, K):
    portfolio_mean = np.mean(R, axis=0) * w
    portfolio_var = w.T * K * w
    return portfolio_mean.item(), portfolio_var.item()
```

- The `item()` method is required to convert a one-dimensional matrix into a scalar.

4.4.3.2 Obtaining portfolio data in Pandas

```python
portfolio = pd.concat([returns_df(s) for s in ['AAPL', 'ATVI', 'MSFT', 'VRSN', 'WDC']], axis=1)
```

<table>
<thead>
<tr>
<th>Date</th>
<th>AAPL returns (M)</th>
<th>ATVI returns (M)</th>
<th>MSFT returns (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>-0.033421</td>
<td>-0.029596</td>
<td>0.022926</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.016949</td>
<td>-0.141371</td>
<td>-0.108802</td>
</tr>
<tr>
<td>2002-10-31</td>
<td>0.108276</td>
<td>-0.143335</td>
<td>0.222450</td>
</tr>
<tr>
<td>2002-11-30</td>
<td>-0.035470</td>
<td>0.053658</td>
<td>0.078736</td>
</tr>
<tr>
<td>2002-12-31</td>
<td>-0.075484</td>
<td>-0.324537</td>
<td>-0.103676</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>VRSN returns (M)</th>
<th>WDC returns (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-08-31</td>
<td>0.121875</td>
<td>-0.087838</td>
</tr>
<tr>
<td>2002-09-30</td>
<td>-0.296657</td>
<td>0.160493</td>
</tr>
<tr>
<td>2002-10-31</td>
<td>0.594059</td>
<td>0.317022</td>
</tr>
<tr>
<td>2002-11-30</td>
<td>0.305590</td>
<td>0.365105</td>
</tr>
<tr>
<td>2002-12-31</td>
<td>-0.236917</td>
<td>-0.243787</td>
</tr>
</tbody>
</table>

4.4.3.3 Computing the covariance matrix

```python
portfolio.cov()
```

<table>
<thead>
<tr>
<th>AAPL returns (M)</th>
<th>ATVI returns (M)</th>
<th>MSFT returns (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL returns (M)</td>
<td>0.009047</td>
<td>0.003175</td>
</tr>
<tr>
<td>ATVI returns (M)</td>
<td>0.003175</td>
<td>0.009093</td>
</tr>
<tr>
<td>MSFT returns (M)</td>
<td>0.002335</td>
<td>0.001402</td>
</tr>
<tr>
<td>VRSN returns (M)</td>
<td>0.002891</td>
<td>0.001898</td>
</tr>
<tr>
<td>WDC returns (M)</td>
<td>0.004194</td>
<td>0.002607</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VRSN returns (M)</th>
<th>WDC returns (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL returns (M)</td>
<td>0.002891</td>
</tr>
<tr>
<td>ATVI returns (M)</td>
<td>0.001898</td>
</tr>
<tr>
<td>MSFT returns (M)</td>
<td>0.002008</td>
</tr>
<tr>
<td>VRSN returns (M)</td>
<td>0.011007</td>
</tr>
<tr>
<td>WDC returns (M)</td>
<td>0.005368</td>
</tr>
</tbody>
</table>
4.43.4 Converting to matrices

```python
R = np.matrix(portfolio)
K = np.matrix(portfolio.cov())
```

```python
K
```

```
matrix([[0.00904665, 0.00317498, 0.00233534, 0.00289089, 0.00419387],
        [0.00317498, 0.00909339, 0.00140182, 0.00189845, 0.00260658],
        [0.00233534, 0.00140182, 0.00428272, 0.00200831, 0.00241259],
        [0.00289089, 0.00189845, 0.00200831, 0.0110073 , 0.00536781],
        [0.00419387, 0.00260658, 0.00241259, 0.00536781, 0.01610639]])
```

4.43.5 An example portfolio

- Let’s construct a single portfolio by specifying a weight vector:

```python
w = np.matrix(['0.4; 0.2; 0.1; 0.1'])
```

```python
w
```

```
matrix([[0.4],
        [0.2],
        [0.2],
        [0.1],
        [0.1]])
```

```python
np.sum(w)
```

```
1.0
```

```python
portfolio_mean_var(w, R, K)
```

```
(0.023266799902568663, 0.004278614805731206)
```

4.43.6 Optimizing portfolios

- We can use the scipy.optimize module to solve the portfolio optimization problem.
- First we import the module:

```python
import scipy.optimize as sco
```

4.43.6.1 Defining an objective function

- Next we define an objective function.
- This function will be minimized.
- In this example, we linearly weight each of our optimization objectives, mean and variance, using a risk-aversion parameter.
```python
def portfolio_performance(w_list, R, K, risk_aversion):
    w = np.matrix(w_list).T
    mean, var = portfolio_mean_var(w, R, K)
    return risk_aversion * var - (1 - risk_aversion) * mean
```

4.4.3.2 Computing the performance of a given portfolio

```python
def uniform_weights(n):
    return [1. / float(n) for i in range(n)]

uniform_weights(5)

[0.2, 0.2, 0.2, 0.2, 0.2]
portfolio_performance(uniform_weights(5), R, K, risk_aversion=0.5)

- 0.008482461529679837
```

4.4.3.3 Finding optimal portfolio weights

```python
def optimal_portfolio(R, K, risk_aversion):
    n = R.shape[1]
    constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
    bounds = tuple((0,1) for asset in range(len(w)))
    result = sco.minimize(portfolio_performance, uniform_weights(n),
                          args=(R, K, risk_aversion),
                          method='SLSQP', bounds=bounds, constraints=constraints)
    return np.matrix(result.x).T

optimal_portfolio(R, K, risk_aversion=0.5)
matrix([[9.04156453e-01],
        [7.2853860e-17],
        [0.0000000e+00],
        [9.58435472e-02],
        [0.0000000e+00]])
```

4.4.7 Computing the Pareto frontier

- First we define our risk aversion coefficients

```python
risk_aversion_coefficients = np.arange(0.0, 1.1, 0.1)
risk_aversion_coefficients
```

array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

4.4.7.1 The optimal portfolios

4 Statistics and optimization with SciPy
The least risk-averse portfolio:

```
: optimal_portfolios = [optimal_portfolio(R, K, ra) for ra in risk_aversion_coefficients]
```

```
matrix([[1.0000e+00],
        [2.9577e-16],
        [9.2981e-16],
        [3.7730e-16]])
```

The most risk-averse portfolio:

```
: optimal_portfolios[-1]
```

```
matrix([[0.0933],
        [0.2077],
        [0.5684],
        [0.1134],
        [0.0173]])
```

4.43.7.2 The efficient frontier

- Now we can map from the optimal portfolio weights for each level of risk-aversion onto mean-variance space:

```
: pareto_frontier = np.matrix([portfolio_mean_var(w, R, K) for w in optimal_portfolios])
```

```
matrix([[0.0319, 0.009 ],
        [0.0319, 0.009 ],
        [0.0319, 0.009 ],
        [0.0319, 0.009 ],
        [0.031 , 0.008 ],
        [0.0289, 0.0065],
        [0.026 , 0.0051],
        [0.022 , 0.0038],
        [0.0197, 0.0034],
        [0.017 , 0.0032]])
```

4.43.8 Plotting the Pareto frontier

```
: plt.plot(pareto_frontier[:, 1], pareto_frontier[:, 0])
: plt.xlabel('$\sigma_p$'); plt.ylabel('$r_p$')
: plt.show()

4 Statistics and optimization with SciPy
5 Monte-Carlo Methods

5.1 Quantitative Models

- A mathematical model uses variables to represent quantities in the real-world.
  - e.g. security prices
- Variables are related to each other through mathematical equations.
- Variables can be divided into:
  - Input variables: parameters (independent variables)
    - Initial conditions: parameters which specify the initial values of in a time-varying (dynamic) model.
  - Output variables: dependent-variables (e.g. payoff of an option).

5.2 Monte-Carlo Methods

- Financial models are typically stochastic.
- Stochastic models make use of random variables.
- If the dependent variables are stochastic, we typically want to compute their expectation.
  - Note, however, that in some models, dependent variables are deterministic, even when parameters are random.
- If the parameters are stochastic, we can use Monte-Carlo methods to estimate the expected values of dependent variables.

5.3 The Monte-Carlo Casino

- “Monte-Carlo” was the secret code-name of a project which used the earliest Monte-Carlo methods to solve problems of neutron-diffusion during the development of the first-atomic bomb.
- It was named after the Monte-Carlo casino.

5.4 Pseudo-code

- We will illustrate a simple Monte-Carlo method for analysing a stochastic model.
- We will make use of pseudo-code.
- Pseudo-code is written for people.
- It is not executable by machines.
- It is written to illustrate exactly how something is done.
- Exact specifications of the steps required to compute mathematical values are called algorithms.
- Pseudo-code can be used to write down algorithms.
5.5 A simple Monte-Carlo method

- Here we consider a simple model with one input variable $X$, and one output variable $Y$, related by a function $Y = f(X)$.
- $X$ and $Y$ are random variables.
- $X$ is iid. distributed with some known distribution.
- We want to compute the expected value of the dependent variable $E(Y)$.
- We do so by drawing a random sample of $n$ random variates $(x_1, x_2, \ldots, x_n)$ from the specified distribution.
- We map these values onto a sample $y$ of the dependent variable $Y$: $y = (f(x_1), f(x_2), \ldots, f(x_n))$.
- We can use the sample mean $\bar{y} = \sum f(x_i) / n$ to estimate $E(Y)$.
- Provided that $n$ is sufficiently large, our estimate will be accurate by the law of large numbers.
- $\bar{y}$ is called the Monte-Carlo estimator.

5.6 In Pseudo-code

- The pseudo-code below illustrates the method specified on the previous slide using iteration:

```python
sample = []
for i in range(n):
 x = draw_random_value(distribution)
 y = f(input_variable)
 sample.append(y)
result = mean(sample)
```

- We can write this more concisely using a comprehension:

```python
inputs = draw_random_value(distribution, size=n)
result = mean([f(x) for x in inputs])
```

5.7 A Monte-Carlo algorithm for computing $\pi$

1. Inscribe a circle in a square.
2. Randomly generate points $(X, Y)$ in the square.
3. Determine the number of points in the square that are also in the circle.
4. Let $R$ be the number of points in the circle divided by the number of points in the square, then $\pi = 4 \times E(R)$.

See this tutorial.

```python
import numpy as np
def f(x, y):
 if x*x + y*y < 1:
 return 1.
 else:
 return 0.
n = 1000000
X = np.random.random(size=n)
```
The expectation of a random variable $X \in \mathbb{R}$ with pdf. $f(x)$ can be written:

$$E[X] = \int_{-\infty}^{+\infty} xf(x) \, dx$$  \hspace{1cm} (5.1)

For a continuous uniform distribution over $U(0, 1)$, the pdf. is $f(x) = 1$, and:

$$E[X] = \int_{0}^{1} x \, dx$$  \hspace{1cm} (5.2)

### 5.9 Estimating $\pi$ using Monte-Carlo integration

Consider:

$$E[\sqrt{1 - X^2}] = \int_{0}^{1} \sqrt{1 - x^2} \, dx$$  \hspace{1cm} (5.3)

If we draw a finite random sample $x_1, x_2, \ldots, x_n$ from $U(0, 1)$, then

$$\bar{x} \approx E[X] = \int_{0}^{1} \sqrt{1 - x^2} \, dx$$  \hspace{1cm} (5.4)

$$\int \sqrt{1 - x^2} \, dx = \frac{1}{2} (x \sqrt{1 - x^2} + \arcsin(x)).$$  \hspace{1cm} (5.5)

Therefore:

$$\bar{x} \approx E[X] = \frac{\pi}{4}$$  \hspace{1cm} (5.7)

### 5.10 Estimation error

- By the law of large numbers $\lim_{n \to \infty} \bar{x} = E(X)$.
- However, for finite values of $n$ we will have an estimation error.
- Can we quantify the estimation error as a function of $n$?
5.11 Computing the error numerically

- If we draw from a standard normal distribution, we know that \( E(X) = 0 \).
- Therefore we can easily compute the estimation error in any given sample.

5.12 The error for a small random sample.

- Here \( X \sim N(0,1) \), and we draw a random sample \( x = (x_1, x_2, \ldots, x_n) \) of size \( n = 5 \).
- We will compute \( \epsilon_x = |x - E(X)| = |x| \).

```python
x = np.random.normal(size=5)
x
array([0.1388361 , 0.38725229, 0.32960095, 0.75778728, -0.20427589])
np.mean(x)
0.28184014536845586
estimation_error = np.sqrt(np.mean(x)**2)
estimation_error
0.28184014536845586
```

- If we draw a different sample, will the error be different or the same?

```python
x = np.random.normal(size=5)
estimation_error = np.sqrt(np.mean(x)**2)
estimation_error
0.4203236264247142
```

```python
x = np.random.normal(size=5)
estimation_error = np.sqrt(np.mean(x)**2)
estimation_error
0.472181171295761
```

```python
x = np.random.normal(size=5)
estimation_error = np.sqrt(np.mean(x)**2)
estimation_error
0.6013672431458685
```

- The error \( \epsilon_x \) is itself a random variable.
- How can we compute \( E(\epsilon_x) \)?

5.13 Monte-Carlo estimation of the sampling error
def sampling_error(n):
    errors = [np.sqrt(np.mean(np.random.normal(size=n)))**2] \
              for i in range(100000)]
    return np.mean(errors)

sampling_error(5)

0.35638525509003804

- Notice that this estimate is relatively stable:

  sampling_error(5)

0.3568948241598915

  sampling_error(5)

0.35572945022084923

5.14 Monte-Carlo estimation of the standard error

- We can now examine the relationship between sample size \( n \) and the expected error using a Monte-Carlo method.

```python
import matplotlib.pyplot as plt
n = np.arange(5, 200, 10)
plt.plot(n, np.vectorize(sampling_error)(n))
plt.xlabel('n'); plt.ylabel('\textbf{e}_x')
plt.show()
```
5.15 The sampling distribution of the mean

• The variance in the error occurs because the sample mean is a random variable.
• What is the distribution of the sample mean?

5.16 The sampling distribution of the mean

• Let’s fix the sample size at \( n = 30 \), and look at the empirical distribution of the sample means.

```python
Sample size
n = 30
Number of repeated samples
N = 20000

means_30 = [np.mean(np.random.normal(size=n)) for i in range(N)]
ax = plt.hist(means_30, bins=50, label='$n=30$')
plt.show()
```

5.17 The sampling distribution of the mean

• Now let’s do this again for a variable sampled from a different distribution: \( X \sim U(0, 1) \).

```python
Sample size
n = 30
Number of repeated samples
N = 20000

means_30_uniform = [np.mean(np.random.uniform(size=n)) for i in range(N)]
```
5.18 Increasing the sample size

```python
Sample size
n = 200

means_200 = [np.mean(np.random.normal(size=n)) for i in range(N)]
plt.hist(means_30, bins=50, label='$n=30$')
plt.hist(means_200, bins=50, label='$n=200$')
plt.legend()
plt.show()
```
5.18.1 Increasing the sample size further

```python
Sample size
n = 1000
means_1000 = [np.mean(np.random.normal(size=n)) for i in range(N)]
plt.hist(means_30, bins=50, label='n=30$
plt.hist(means_200, bins=50, label='n=200$
plt.hist(means_1000, bins=50, label='n=1000$
plt.legend(); plt.show()
```
5.19 The sampling distribution of the mean

- In general the sampling distribution of the mean approximates a normal distribution.
- If $X \sim N(\mu, \sigma^2)$ then $\bar{x}_n \sim N(\mu, \frac{\sigma^2}{n})$.
- The standard error of the mean is $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$.
- Therefore sample size must be quadrupled to achieve half the measurement error.

5.20 Summary

- Monte-Carlo methods can be used to analyse quantitative models.
- Any problem in which the solution can be written as an expectation of random variable(s) can be solved using a Monte-Carlo approach.
- We write down an estimator for the problem; a variable whose expectation represents the solution.
- We then repeatedly sample input variables, and calculate the estimator numerically (in a computer program).
- The sample mean of this variable can be used as an approximation of the solution; that is, it is an estimate.
- The larger the sample size, the more accurate the estimate.
- There is an inverse-square relationship between sample size and the estimation error.
6 Random walks in Python

(c) 2019 Steve Phelps

6.1 A Simple Random Walk

- Imagine a board-game in which we move a counter either up or down on an infinite grid based on the flip of a coin.
- We start in the center of the grid at position \( y_1 = 0 \).
- Each turn we flip a coin. If it is heads we move up one square, otherwise we move down.
- How will the counter behave over time? Let’s simulate this in Python.
- First we create a variable \( y \) to hold the current position

```python
y = 0
```

6.2 Movements as Bernoulli trials

- Now we will generate a Bernoulli sequence representing the moves
- Each movement is an i.i.d. discrete random variable \( \epsilon_t \) distributed with \( p(\epsilon_t = 0) = \frac{1}{2} \) and \( p(\epsilon_t = 1) = \frac{1}{2} \).
- We will generate a sequence \( (\epsilon_1, \epsilon_2, \ldots, \epsilon_{t_{\text{max}}}) \) such movements, with \( t_{\text{max}} = 100 \).
- The time variable is also discrete, hence this is a discrete-time model.
- This means that time values can be represented as integers.

6.2.1 Simulating a Bernoulli process in Python

```python
import numpy as np
from numpy.random import randint

max_t = 100
movements = randint(0, 2, size=max_t)
print(movements)
```

```
[0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1]
```

6.3 An integer random-walk in Python

- Each time we move the counter, we move it in the upwards direction if we flip a 1, and downwards for a 0.
- So we add 1 to \( y_t \) for a 1, and subtract 1 for a 0.

6.3.1 an integer random-walk using a loop
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import randint, normal, uniform
max_t = 100
movements = randint(0, 2, size=max_t)
y = 0
values = [y]
for movement in movements:
    if movement == 1:
        y = y + 1
    else:
        y = y - 1
    values.append(y)

6.3.1.1 Plot of a single integer random walk

def plot_random_walk(values):
    plt.plot(values, label='Random Walk')
    plt.xlabel('t')
    plt.ylabel('y')
    plt.show()

6.4 A random-walk as a cumulative sum

- Notice that the value of $y_t$ is simply the cumulative sum of movements randomly chosen from $-1$ or $+1$.
- So if $p(\epsilon = -1) = \frac{1}{2}$ and $p(\epsilon = +1) = \frac{1}{2}$ then
- We can define our game as a simple stochastic process: $y_t = \sum_{t=1}^{t_{\text{max}}} \epsilon_i$
- We can use numpy’s `where()` function to replace all zeros with $-1$. 

6 Random walks in Python
6.4.1 an integer random-walk using an accumulator

```python
1 t_max = 100
2 random_numbers = randint(0, 2, size=t_max)
3 steps = np.where(random_numbers == 0, -1, +1)
4 y = 0
5 values = [0]
6 for step in steps:
7 y = y + step
8 values.append(y)
```

6.4.1.1 Plot of a single integer random walk

```python
1 plt.xlabel('t')
2 plt.ylabel('y')
3 plt.plot(values)
4 plt.show()
```

6.5 A random-walk using arrays

- We can make our code more efficient by using the `cumsum()` function instead of a loop.
- This way we can work entirely with arrays.
- Remember that vectorized code can be much faster than iterative code.

6.5.1 an integer random-walk using vectorization

```python
1 # Vectorized random-walk with arrays to improve efficiency
2 t_max = 100
3 random_numbers = randint(0, 2, size=t_max)
4 steps = np.where(random_numbers == 0, -1, +1)
```
6.5.2 Using `concatenate` to prepend the initial value

- If we want to include the initial position $y_0 = 0$, we can concatenate this value to the computed values from the previous slide.
- The `numpy.concatenate()` function takes a single argument containing a sequence of arrays, and returns a new array which contains all values in a single array.
6.6 Multiple realisations of a stochastic process

- Because we are making use of random numbers, each time we execute this code we will obtain a different result.
- In the case of a random-walk, the result of the simulation is called a path.
- Each path is called a realisation of the model.
- We can generate multiple paths by using a 2-dimensional array (a matrix).
- Suppose we want \( n = 10 \) paths.
- In Python we can pass two values for the size argument in the `randint()` function to specify the dimensions (rows and columns):

```python
t_max = 100
n = 10
random_numbers = randint(0, 2, size=(t_max, n))
steps = np.where(random_numbers == 0, -1, +1)
```

6.7 Using `cumsum()`

We can then tell `cumsum()` to sum the rows using the `axis` argument:

```python
values = np.cumsum(steps, axis=0)
values = np.concatenate((np.matrix(np.zeros(n)), values), axis=0)
plt.xlabel('\$t\$
plt.ylabel('\y_{t}
ax = plt.plot(values)
```
6.8 Multiplicative Random Walks

- The series of values we have looked at do not closely resemble how security prices change over time.
- In order to obtain a more realistic model of how prices change over time, we need to multiply instead of add.
- Let $r_t$ denote an i.i.d. random variable distributed $r_t \sim N(0, \sigma^2)$
- Define a strictly positive initial value $y_0 \in \mathbb{R}$; e.g. $y_0 = 10$.
- Subsequent values are given by $y_t = y_{t-1} \times (1 + r_t)$
- We can write this as a cumulative product:

$$y_t = y_0 \times \prod_{i=1}^{t_{\text{max}}} \epsilon_i$$

6.9 Using cumprod()

- This can be computed efficiently using numpy’s cumprod() function.

```python
initial_value = 100.0
random_numbers = normal(size=t_max) * 0.005
multipliers = 1 + random_numbers
values = initial_value * np.cumprod(multipliers)
plt.xlabel('t$
plt.ylabel('y_t$
ax = plt.plot(np.concatenate(([initial_value], values)))
```
6.10 Random walk variates as a time-series

- Now let’s plot the random perturbations over time

```python
plt.xlabel('t')
plt.ylabel('x_t')
ax = plt.plot(random_numbers)
```
6.11 Gross returns

- If we take $100 \times \epsilon_t$, then these represent the percentage changes in the value at discrete time intervals.
- If the values represent prices that have been adjusted to incorporate dividends, then the multipliers are called simple returns.
- The gross return is obtained by adding 1.

```python
plt.xlabel('t')
plt.ylabel('r_t')
ax = plt.plot(random_numbers + 1)
```

6.12 Continuously compounded, or log returns

- A simple return $R_t$ is defined as

$$R_t = \frac{(y_t - y_{t-1})}{y_{t-1}} = \frac{y_t}{y_{t-1}} - 1$$

where $y_t$ is the adjusted price at time $t$.
- The gross return is $R_t + 1$
- A continuously compounded return $r_t$, or log-return, is defined as:

$$r_t = \log(y_t/y_{t-1}) = \log(y_t) - \log(y_{t-1})$$

- In Python:

```python
from numpy import diff, log
diff(log(prices))
```
6.13 Aggregating returns

- Simple returns aggregate across assets— the return on a portfolio of assets is the weighted average of the simple returns of its individual securities.
- Log returns aggregate across time.
  - If return in year one is \( r_1 = \log(p_1 / p_0) = \log(p_1) - \log(p_0) \)
  - and return in year two is \( r_2 = \log(p_2 / p_1) = \log(p_2) - \log(p_1) \),
  - then return over two years is \( r_1 + r_2 = \log(p_2) - \log(p_0) \)

6.14 Converting between simple and log returns

- A simple return \( R_t \) can be converted into a log-return \( r_t \):
  \[
  r_t = \log(R_t + 1)
  \]

6.15 Comparing simple and log returns

- For small values of \( r_t \) then \( R_t \approx r_t \).
- We can examine the error for larger values:

```python
simple_returns = np.arange(-0.75, 0.75, 0.01)
log_returns = np.log(simple_returns + 1)
plt.xlim([-1.5, 1.5]); plt.ylim([-1.5, 1.5])
plt.plot(simple_returns, log_returns)
x = np.arange(-1.5, 1.6, 0.1)
plt.xlabel('R'); plt.ylabel('r')
plt.plot(x, x); plt.show()
```
6.16 A discrete multiplicative random walk with log returns

- Let $r_t$ denote a random i.i.d. variable distributed $r_t \sim N(0, \sigma^2)$
- Then $y_t = y_0 \times \exp\left(\sum_{t=1}^{\text{max}} r_t\right)$

6.16.1 Plotting a single realization

```python
from numpy import log, exp, cumsum
t_max = 100
volatility = 1e-2
initial_value = 100.
r = normal(size=t_max) * np.sqrt(volatility)
y = initial_value * exp(cumsum(r))
plt.xlabel('t')
plt.ylabel('y_t')
ax = plt.plot(np.concatenate(([initial_value], y)))
```
6.17 Multiple realisations of a multiplicative random-walk

- Let’s generate \( n = 10 \) realisations of this process:

``` python
def random_walk(initial_value = 100, n = 10,
 t_max = 100, volatility = 0.005):
 r = normal(size=(t_max+i, n)) * np.sqrt(volatility)
 return np.concatenate((np.matrix([initial_value] * n),
 initial_value * exp(np.cumsum(r, axis=0))))
```

plt.xlabel('$t$')
plt.ylabel('$y_t$')
ax = plt.plot(random_walk(n=10))

6 Random walks in Python
6.18 Geometric Brownian Motion

- For a continuous-time process, we use Geometric Brownian Motion (GBM):

\[ S_t = S_0 \prod_{i=1}^{k} Y_i \]  \hspace{1cm} (6.1)

\[ Y_i = \exp(\sigma \sqrt{\Delta t} z_i + \mu \Delta t) \]  \hspace{1cm} (6.2)

\[ = \exp(\sigma \sqrt{\Delta t} z_i + (r - \frac{\sigma^2}{2}) \Delta t) \]  \hspace{1cm} (6.3)

- As a cumulative sum:

\[ S_t = S_0 \times \exp\left(\sum_{i=1}^{k} \sigma \sqrt{\Delta t} z_i + (r - \frac{\sigma^2}{2}) \Delta t\right) \]  \hspace{1cm} (6.5)

6.18.1 GBM with multiple paths in Python

```python
def gbm(sigma, r, k, t_max, S0, I=1):
 z = np.random.normal(size=(k-1, I))
 dt = t_max/k
 y = sigma * np.sqrt(dt)*z + (r - sigma**2 / 2.) * dt
 return S0 * np.exp(np.cumsum(y, axis=0))
```

6.18.1.1 Plotting multiple realizations of GBM
```python
sigma = 0.05; r = 0.01; k = 100; t_max = 10.; S0 = 100.
T = np.arange(0, t_max - t_max/k, t_max/k)
ax = plt.plot(T, gbm(sigma, r, k, t_max, S0, I=50))
plt.xlabel('\$t\$'); plt.ylabel('\$S_t\$'); plt.show()
```

---

6 Random walks in Python

124
7 Monte-Carlo simulation for option pricing

7.1 Options

• An option gives the right to buy (call) or sell (put) an underlying stock at a prespecified price, called the strike price, at a specified date, or period.
  – A European option specifies a single date.
  – An American option specifies a period.

• Options can also specify an index, in which case they are settled in cash.

• People selling options are called option writers.

• People buying options are the option holders.

7.2 Payoff to an option holder

• The payoff to an option holder depends on the index price $S_T$ when the option is exercised.

• For a European option with strike price $K$, and maturity date $T$:
  – If the index is below the strike, the option is worthless.
  – Otherwise the holder receives the difference between the index price and the strike price: $S_T - K$.

• Therefore the payoff to the option is:

$$\max(S_T - K, 0). \quad (7.1)$$

7.3 Outcomes

• In-the-money (ITM):
  – a call (put) is in-the-money if $S > K \, (S < K)$.

• At-the-money (ATM):
  – an option is at-the-money if $S \approx K$.

• Out-of-the-money (OTM):
  – a call (put) is out-of-the-money if $S < K \, (S > K)$.

```python
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

K = 8000 # Strike price
S = np.arange(7000, 9000, 100) # index level values
h = np.maximum(S - K, 0) # inner values of call option
```
7.3.1 Plotting the payoff function

```python
plt.plot(S, h, lw=2.5) # plot inner values at maturity
plt.xlabel('index level S_t at maturity'); plt.ylabel('inner value of European call option')
```

![Plot of payoff function](image)

7.4 Parameters which affect the inner-value

- Initial price level of the index $S_0$.
- Volatility of the index $\sigma$.
- The return(s) of the index.
- Time-to-maturity $T$.

7.5 Risk-neutral assumptions

When all of the following assumptions hold:

- no arbitrage,
- complete markets (no transaction costs and perfect information),
- law of one price (assets with identical risk and return have a unique price)
7.6 Risk-neutral parameters

we can price options without having to take account of investors’ risk-preferences using only the following parameters:

- Initial price level of the index $S_0$.
- Volatility of the index $\sigma$.
- Time-to-maturity $T$.
- The risk-free rate $r$.

7.7 Monte-Carlo option valuation

- For a European option, the inner-value is not path-dependent.
- Under risk-neutral pricing, we use Geometric Brownian Motion (GBM) with:

$$S_T = S_0 \times \exp((r - \frac{\sigma^2}{2})T + \sigma \sqrt{T}z)$$

(7.2)

- where $r$ is the risk-free rate.

7.8 Non-path dependent algorithm to estimate the inner-value:

1. Draw $I$ random numbers $z_1, z_2, \ldots, z_I$ from the standard normal distribution.
2. For $i \in \{1, 2, \ldots, I\}$:
   i). Calculate index level at maturity by simulating geometric Brownian motion using the above equation.
   ii). Compute the inner-value of the option $h_T = \max(S_T - K, 0)$.
   iii). Discount back to the present at the risk-free rate $r$, giving the present value:

$$C_i = e^{-rt}h_T.$$  

(7.3)

3. Output the final estimate by computing the Monte-Carlo estimator $\hat{C} = \frac{\sum_{i=1}^{I} C_i}{I}$

7.9 Monte-Carlo valuation of European call option in Python

In the following we use the following parameterization of the model: initial index price $S_0 = 100$, strike price $K = 105$, time-to-maturity $T = 1$, risk-free rate $r = 0.02$, index volatility $\sigma = 0.02$, number of independent realizations $I = 10^5$.

```python
from numpy import sqrt, exp, cumsum, sum, maximum, mean
from numpy.random import standard_normal

Parameters
S0 = 100.; K = 105.; T = 1.0
r = 0.02; sigma = 0.1; I = 100000

Simulate I outcomes
S = S0 * exp((r - 0.5 * sigma ** 2) * T + sigma * sqrt(T) * standard_normal(I))

Calculate the Monte Carlo estimator
```
7.10 Asian (average-value) option

- The payoff of an asian option is determined by the average of the price of the underlying over a pre-defined period of time.
- Payoff for a fixed-strike Asian call option:

\[ C_T = \max(A(0, T) - K, 0) \]  
(7.4)

where:

\[ A(0, T) = \frac{1}{T} \int_0^T S_t dt \]  
(7.5)

If we let \( t_i = i \times \frac{T}{n} \) \( i \in 0, 1, 2, \ldots, n):  

\[ A(0, T) \approx \frac{1}{n} \sum_{i=0}^{n-1} S_{t_i} \]  
(7.6)

- The payoff is path dependent, and therefore we need to simulate intermediate values of \( S_t \).

7.11 Path-dependent Monte-Carlo option pricing

- To simulate GBM at \( M \) evenly spaced time intervals \( t_i \) with \( \Delta T = T/M \):

\[ S_{t_i} = S_0 \times \exp\left(\sum_{i=1}^{k} \sigma \sqrt{\Delta t} z_i + (r - \frac{\sigma^2}{2}) \Delta t\right) \]  
(7.7)

7.12 Algorithm for path-dependent option pricing

1. Draw \( I \times M \) random numbers from the standard normal distribution.
2. For \( i \in \{1, 2, \ldots, I\}:
   
   i). Calculate index level at times \( t_i \in \{\Delta T, 2\Delta T, \ldots, T\} \) by simulating geometric Brownian motion with drift \( \mu = r \) and volatility \( \sigma \) using the equation for \( S_{t_i} \).
   
   ii). Estimate the inner-value of the option \( \hat{h}_T = \frac{1}{T} \sum_{i=1}^{M} S_{t_i} \).
   
   iii). Discount back to the present at the risk-free rate \( r \), giving the present value:

\[ C_i = e^{-rT} \hat{h}_T. \]  
(7.8)

3. Output the final estimate by computing the Monte-Carlo estimator \( \hat{C} = \frac{\sum_{i=1}^{I} C_i}{I} \).
7.12.1 Monte-Carlo valuation of Asian fixed-strike call option in Python

In the following we use the following parameterization of the model: initial index price $S_0 = 100$, time-to-maturity $T = 1$, number of time-steps $M = 200$, risk-free rate $r = 0.02$, index volatility $\sigma = 0.1$, number of independent realizations $I = 10^5$.

```python
from numpy import sqrt, exp, cumsum, sum, maximum, mean
from numpy.random import standard_normal

Parameters
S0 = 100.; T = 1.0; r = 0.02; sigma = 0.1
M = 200; dt = T / M; I = 100000

Inner value
def inner_value(S):
 """ Inner value for a fixed-strike Asian call option """
 return mean(S, axis=0)

Simulate I paths with M time steps
S = S0 * exp(cumsum((r - 0.5 * sigma ** 2) * dt + sigma * sqrt(dt) * standard_normal((M + 1, I)), axis=0))

Calculate the Monte Carlo estimator
C0 = exp(-r * T) * mean(inner_value(S))
print("Estimated present value is \$\%f\$ \$\%f\$")
```

Estimated present value is $99.052181$
8 Estimating Value-At-Risk (VaR) in Python

8.1 Value-at-Risk (VaR)

- Value at risk (VaR) is a methodology for computing a risk measurement on a portfolio of investments.
- It is defined over:
  - a duration of time, e.g. one day.
  - a confidence level (or equivalent percentage) $\alpha$.
- The $\text{VaR}_\alpha$ over duration $T$ is the maximum possible loss during $T$, excluding outcomes whose probability is less than $\alpha$, according to our model.

8.2 Value-at-Risk (VaR)
8.3 Mathematical definition

- Value at Risk with confidence $\alpha$ can be defined

$$VaR_{\alpha}(X) = \min \{ x \in \mathbb{R} : 1 - F_X(x) \geq \alpha \}$$  \hspace{1cm} (8.1)

where $X$ is a random variable representing the value of the portfolio, with cumulative distribution function $F_X$.

- The $VaR_{\alpha}(X)$ is simply the negative of the $\alpha$-quantile.
- We typically assume mark-to-market accounting, and so the value of the portfolio is determined from fair market prices.

8.4 Quantiles, Quartiles and Percentiles

0 quartile = 0 quantile = 0 percentile
1 quartile = 0.25 quantile = 25 percentile
2 quartile = 0.5 quantile = 50 percentile (median)
3 quartile = 0.75 quantile = 75 percentile
4 quartile = 1 quantile = 100 percentile
8.5 Computing quantiles in Python

- First we will generate some random data.

```python
import numpy as np

data = np.random.normal(size=100000)
plt.hist(data, bins=100)
plt.show()
```

8.6 Computing quantiles in Python

```python
Compute the 5th-percentile
np.percentile(data, q=5)
```
- 1.6548195402636892

8.7 Computing several percentiles

```python
for p in range(1, 6):
 print("The \%d-percentile is \%f" % (p, np.percentile(data, q=p)))
```

The 1-percentile is -2.350552
The 2-percentile is -2.072378
The 3-percentile is -1.891520
The 4-percentile is -1.763699
8.8 Estimating VaR

• The VaR depends on the distribution of a random variable, e.g. the price of an index, over a specified period of time.
• How can we estimate the quantiles of this distribution?

8.9 Estimating VaR

Common methods:
• Variance/Covariance method.
• Historical simulation- bootstrap from historical data.
• Monte-Carlo simulation.

8.10 Historical simulation

To calculate \( VaR_a(X) \) with sampling interval \( \Delta_t \) over \( T = n \times \Delta_t \) using a total of \( N \) bootstrap samples:

1. Assuming that the returns are stationary over the entire period, obtain a large sample of historical prices for the components of the portfolio or index.
2. Convert the prices into returns with frequency \( 1/\Delta_t \).
3. For every \( i \in \{1, \ldots, N\} \):
   • Randomly choose \( n \) returns \( r_1, r_2, \ldots, r_n \) with replacement.
   • Compute \( P_i(r_1, r_2, \ldots, r_n) \) - the profit and loss of the investment given these returns.
4. Compute \( Q(a) \) from the sample \( P \), where \( Q \) is the quantile function.

8.11 Random choices in Python

• We can use the function choice() from the numpy module to choose randomly from a set of values.
• To choose a single random value:

```python
import numpy as np
data = np.random.randint(1, 6+1, size=20)
data
```

```
array([3, 3, 4, 1, 6, 2, 1, 2, 2, 6, 2, 2, 5, 3, 6, 5, 5, 2, 4, 1])
```

```python
np.random.choice(data, replace=True)
```

4

```python
np.random.choice(data, replace=True)
```
8.12 Generating a sequence of choices

- We can think of this as a simple bootstrap model of a dice:

```python
np.random.choice(data, size=5, replace=True)
```

array([1, 4, 3, 5, 1])

8.13 Bootstrapping from empirical data

- Typically we will collect real-world (empirical) data from a random process whose true distribution is unknown.
- In Finance, we can bootstrap from historical returns.

8.14 Obtaining returns for the Nikkei 225 index

```python
import pandas as pd
n225 = pd.read_csv('data/N225.csv')
n225.set_index('Date', inplace=True)
returns = np.diff(np.log(n225['Adj Close']))
plt.plot(returns)
plt.xlabel('t')
plt.ylabel('r')
plt.show()
```
8.15 Simulating returns

- We will now simulate the returns over the next five days:

```python
num_days = 5
simulated_returns = np.random.choice(retentions, size=num_days, replace=True)
simulated_returns
```

```
array([0.00485614, 0.01182755, -0.01755096, -0.0035224 , -
0.00928068])
```

8.16 Simulating prices

```python
initial_price = 100.
prices = initial_price * np.exp(np.cumsum(simulated_returns))
plt.plot(prices)
plt.xlabel('t')
plt.ylabel('price')
plt.show()
```

• If we perform this simulation again, will we obtain the same result?

```python
num_days = 5
simulated_returns = np.random.choice(retentions, size=num_days, replace=False)
prices = initial_price * np.exp(np.cumsum(simulated_returns))
plt.plot(prices)
plt.xlabel('t')
plt.ylabel('price')
```
```python
num_days = 5
simulated_returns = np.random.choice(returns, size=num_days, replace=False)
prices = initial_price * np.exp(np.cumsum(simulated_returns))
plt.plot(prices)
plt.xlabel('t')
plt.ylabel('price')
plt.show()
```
Estimating Value-At-Risk (VaR) in Python

```python
num_days = 5
simulated_returns = np.random.choice(returns, size=num_days, replace=False)
prices = initial_price * np.exp(np.cumsum(simulated_returns))
plt.plot(prices)
plt.xlabel('t')
_ = plt.ylabel('price')
```
8.17 The distribution of the final price

```python
def final_price():
 num_days = 20
 simulated_returns = np.random.choice(returns, size=num_days, replace=True)
 prices = initial_price * np.exp(np.cumsum(simulated_returns))
 return prices[-1]
```

```python
num_samples = 100000
prices = [final_price() for i in range(num_samples)]
plt.hist(prices, bins=100)
plt.show()
```

8.18 The distribution of the profit and loss

```python
def profit_and_loss(final_price):
 return 1200000 * (final_price - initial_price)
```

```python
p_and_l = np.vectorize(profit_and_loss)(prices)
plt.hist(p_and_l, bins=100)
plt.show()
```
8.19 The quantiles of the profit and loss

```python
for p in range(1, 6):
 print("The %.2f-quantile is %.4f" % (p/100., np.percentile(p_and_l, q=p)))
```

- The 0.01-quantile is -8359991.6042
- The 0.02-quantile is -7165047.1254
- The 0.03-quantile is -6399125.5624
- The 0.04-quantile is -5837986.8979
- The 0.05-quantile is -5348176.8969

What is the 5% Value-At-Risk?

```python
var = -1 * np.percentile(p_and_l, q=5)
print("5%-VaR is %.4f" % var)
```

5%-VaR is 5348176.8969